IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

1133

A Framework for Resource-Constrained
Rate-Optimal Software Pipelining

R. Govindarajan, Erik R. Altman, and Guang R. Gao

Abstract— The rapid advances in high-performance com-
puter architecture and compilation techniques provide both
challenges and opportunities to exploit the rich solution
space of software pipelined loop schedules. In this paper,
we develop a framework to construct a software pipelined
loop schedule which runs on the given architecture (with a
fixed number of processor resources) at the maximum pos-
sible iteration rate (i la rate-optimal) while minimizing the
number of buffers — a close approximation to minimizing
the number of registers.

The main contributions of this paper are:

¢ First, we demonstrate that such problem can be de-
scribed by a simple mathematical formulation with
precise optimization objectives under a periodic linear
scheduling framework. The mathematical formulation
provides a clear picture which permits one to visualize
the overall solution space (for rate-optimal schedules)
under different sets of constraints.

¢ Secondly, we show that a precise mathematical formu-
lation and its solution does make a significant perfor-
mance difference. We evaluated the performance of our
method against three leading contemporary heuristic
methods. Experimental results show that the method
described in this paper performed significantly better
than these methods.

The techniques proposed in this paper are useful in two
different ways:

(i) As a compiler option which can be used in generating
faster schedules for performance-critical loops (if the
interested users are willing to trade the cost of longer
compile time with faster runtime).

(ii) As a framework for compiler writers to evaluate and
improve other heuristics-based approaches by provid-
ing quantitative information as to where and how much
their heuristic methods could be further improved.

Keywords— Instruction-Level Parallelism, Instruction
Scheduling, Integer Linear Programming, Software Pipelin-
ing, Superscalar and VLIW Architectures.

I. INTRODUCTION
OFTWARE PIPELINING has been proposed as an ef-

ficient method for loop scheduling. It derives a static
parallel schedule — a periodic pattern — that overlaps in-
structions from different iterations of a loop body. Soft-
ware pipelining has been successfully applied to high-
performance architectures [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14]. Today, rapid advances in com-

puter architecture — hardware and software technology —

R. Govindarajan is with the Supercomputer Education and Re-
search Center, and Department of Computer Science and Automa-
tion, Indian Institute of Science, Bangalore, 560 012, India. E-
mail:govind@serc.iisc.ernet.in. Erik Altman is with the IBM T. J.
Watson Research Center, Yorktown Heights, NY 10598, U.S.A. E-
mail:erik@watson.ibm.com. Guang Gao is with the School of Com-
puter Science, McGill University, 3480 University Street, Montreal,
H3A 2A7, Canada. E-mail:gao@cs.mcgill.ca. This work was done
when the first two authors were at McGill University. This research
was partly funded by research grants from MICRONET — Network
Centres of Excellence, Canada and NSERC, Canada.

provide a rich solution space involving a large number of
schedules for software pipelining. In exploiting the space of
good compile-time schedules; it is important to find a fast,
software-pipelined schedule which makes the best use of the
machine resources — both function units and registers —
available in the underlying architecture.

In this paper, we are interested in addressing the follow-

ing software pipelining problem:
Problem 1: [OPT] Given a loop £ and a ma-
chine architecture M, construct a schedule that
achieves the highest performance of £ within the
resource constraints of M while using the mini-
mum number of registers.
The performance of a software-pipelined schedule can be
measured by the initiation rate of successive iterations.
Thus “highest performance” refers to the “fastest sched-
ule” or to the schedule with the maximum initiation rate.
A schedule with the maximum initiation rate is called a
rate-optimal schedule.
The following two important questions are related to
Problem 1, the OPT problem.
Question 1: Can a simple mathematical formulation be
developed for the OPT problem?
Question 2: Does the optimality formulation pay off in
real terms 7 We need to answer the question “So what,
after all 7”7
In order to answer Question 1, we consider an instance of
Problem 1. That is,

Problem 2: [OPT-T] Given a loop £ a machine

architecture M, and an iteration period T, con-

struct a schedule, if one exists, with period T sat-

isfying the resource constraints of M and using

the minimum number of registers.
In this paper we consider target architectures involving
both pipelined and non-pipelined execution units. Our ap-
proach to solving the OPT-T problem is based on a peri-
odic scheduling framework for software pipelining [15], [11].
Based on the periodic scheduling framework, we express re-
source constraints as integer linear constraints. Combining
such resource constraints with the work by Ning and Gao,
where a tight upper bound for register requirement is spec-
ified using linear constraints [11], a unified Integer Linear
Program (ILP) formulation for the OPT-T problem is ob-
tained. As in [11], we use FIFO buffers to model register
requirement in this paper. (The relationship between the
Ning/Gao formulation and ours can be better understood
by examining Fig. 2 (page 1138) in which the tradeoff be-
tween buffer and function unit optimality is depicted.)

Readers who are familiar with related work in this field

will find the optimality objective in the above problem for-

1134

mulation to be very ambitious. Of course, the general com-
plexity of the optimal solution is NP-Hard, and heuristics
are needed to solve the problem efficiently. However, we
feel that a clearly stated optimality objective in the prob-
lem formulation is quite important for several reasons:

1. The solution space of “good” schedules’ has in-
creased considerably with the rapid advances in high-
performance architecture. Current and future genera-
tion processors are likely to contain multiple function
units. Likewise, in compilers, advances made in de-
pendence analysis (such as array dataflow analysis [16]
and alias analysis [17]) will expose more instruction-
level parallelism in the code, while loop unrolling, loop
fusion and other techniques will increase the size of the
loop body [18]. So a given loop is likely to have many
good schedules to choose from, and optimality criteria
are essential to guide the selection of the best ones.

2. There are always a good number of users who have
performance-critical applications. For them, the run-
time performance of these applications is of utmost
concern. For these applications, the user may be will-
ing to trade a longer compilation time for an improve-
ment in the runtime speed. Compilers for future gener-
ation high-performance architectures should not deny
such opportunities to these users. The techniques de-
veloped in this paper can be provided to such users
via a compiler option.

3. The techniques proposed in this paper can also be
used in a scheduling framework to ascertain the op-
timal solution so as to evaluate and improve exist-
ing/newly proposed heuristic scheduling methods.

Thus the usefulness of the techniques proposed in this pa-
per should be viewed in the light of items (1) to (3) above.

We have implemented the solution method and tested
it on 1,008 loops extracted from various benchmark pro-
grams such as the SPEC92, the NAS kernels, linpack, and
the livermore loops. The loops were scheduled for differ-
ent architectural configurations involving pipelined or non-
pipelined execution units. In our experiments, we were able
to obtain the optimal schedule for more than 80% of the
test cases considered. These experiments, run on a SPARC
20, required an execution time with median ranging from
0.6 to 2.7 seconds for the different architectural configura-
tions. The geometric mean of execution time ranged from
0.9 to 7.4 seconds.

Question 2, the “So what?” question, has been ad-
dressed by comparing our method with 3 other approaches,
Huff’s Slack Scheduling [7], Wang, Eisenbeis, Jourdan
and Su’s FRLC variant of DESP-Decomposed Software
Pipelining [19], and Gasperoni and Schwiegelshohn’s mod-
ified list scheduling approach [20]. We have implemented
our solution method to the OPT-T and the OPT prob-
lems as well as the above three heuristic methods in an
experimental scheduling testbed. We have measured the
performance of various scheduling methods on the 1,008
kernel loops. The ILP approach yielded schedules that are

LA discussion on the solution space of software-pipelined schedules
is presented in Section III.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

faster in 6% of the test cases compared to Slack Scheduling,
in 21% of the test cases compared to the FRLC method, in
27% of the test cases compared to the modified list schedul-
ing. In terms of buffer requirement, the ILP approach did
significantly better than the three heuristic methods in, re-
spectively, 61%, 87%, and 83% of the test cases.?

In this paper we have concentrated only on loop bod-
ies without conditional statements. Though it is possi-
ble to extend our approach to loops involving conditional
statements using techniques discussed in[21], it is not clear
whether the optimality objective will still hold. We defer
this study to a future work. Further, in this work we focus
only on architectures involving pipelined or non-pipelined
function units. Function units having arbitrary structural
hazards are dealt with in [22] by extending the formulation
proposed for non-pipelined function units.

Finally, as it will become evident, the proposed frame-
work can easily handle other optimization problems in soft-
ware pipelining. For example, given the number of avail-
able registers, it can minimize either the number of required
FUs or a weighted sum of the FUs in different FU types.
Other possible problem formulations can be observed from
Figure 2 (refer to page 1138).

This paper is organized as follows. In the following sec-
tion, we motivate our approach with the help of an exam-
ple. The solution space of software pipelined schedules is
discussed in Section III. In Section IV, the formulation of
the OPT-T problem for pipelined execution units is devel-
oped. The OPT-T formulation for non-pipelined function
units is presented in Section V. Section VI deals with an
iterative solution to the OPT problem. In Section VII, the
results of scheduling 1,008 benchmark loops are reported.
Our ILP schedules are compared with the schedules gen-
erated by other leading heuristic methods in Section VIII.
In Section IX, we discuss other related work. Concluding
remarks are presented in Section X.

II. BACKGROUND AND MOTIVATION

In this section, we motivate the OPT problem and the
solution method to be presented in the rest of this paper
with the help of a program example.

A. Motwating Example

We introduce the notion of rate-optimal schedules under
resource constraints, and illustrate how to search among
them the ones which optimize the register usage. A more
rigorous introduction to these concepts will be given in the
next section. We adopt as our motivating example the loop
L in Figure 1 given by Rau et al in [13].

Both C language and instruction level representations of
the loop are given in Fig. 1(b) while the dependence graph
is depicted in Figure 1(a). Assume that instruction g is
executed in an Integer FU with an execution time of 1
time unit. Instructions i3 (Floating Point (FP) ADD) and

2For a small number of test cases, less than 4%, the ILP schedule
was worse in terms of either initiation rate or buffer requirement.
This is due to fact that we limit our ILP search to a maximum 3
minutes. More details on the results are presented in Section VII.

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

1135

for (i=10;i<n;i++) {
s = s+ ali];
afi] = s * s * ali];

1

’1:01
1:11
1:21
’1:31
?:41
?:51

vr33 = vr33 + vr32
vr34 = load m(vr33)
vr3b = vr35 + vr34
vr36 = vr35 * vr35
vr37 = vr36 * vr34
store(vr37, m(vr33))
branch to ig if 1 < n
enddo

% vr33 is address of a[i] %
% vr34 = afi] %
% vi35 =5 %

% vr37 = new ali] %

(a) Dependence Graph

Fig. 1.

instructions ¢z and 4 (FP MULTIPLY) are executed in an
FP Unit with an execution time of 2 time units. Lastly,
the FP LOAD (41) and FP STORE (i5) are executed by
a Load/Store Unit with execution times of 2 and 1 time
units respectively. We will assume an architecture with 3
Integer FUs, 2 FP Units and 1 Load/Store unit. Fur-
ther, in this subsection, we will assume that all pipelined
function units are free of structural hazards and an op-
eration can be initiated in each function unit at each time
step. Scheduling non-pipelined function units are discussed
in Section II-C.

The performance of a software-pipelined schedule for £
can be measured by the initiation rate of successive itera-
tions. In the following discussion, we often use the recip-
rocal of the initiation rate, the initiation interval T. Let
us first establish a lower bound for T' — i.e. the shortest
initiation interval for loop £ under various constraints. It
is well known that, the initiation interval is governed by
both loop-carried dependencies in the graph and the re-
source constraints presented by the architecture. Under
the loop-carried dependency constraint, the shortest initi-
ation interval, Ty.p, is given by:

d(C)

Tdep - Vcycles C m(C’)

where d(C) is the sum of the delays (or latencies) of the
instructions (or nodes) in cycle C of the dependence graph,
and m(C) is the sum of the dependence distances around
cycle C [23]. Those cycles Ceriz with the maximum value
of %(CCCT:% are termed critical cycles of the graph. In our

example graph, (refer to Fig. 1(a)), the self loop on in-
structions 4y is the critical cycle. Thus, Tg.p for the given
dependency graph is 2.

Resource constraints (of the architecture) also impose
a lower bound on the initiation interval. Each resource
type (function unit), e.g. Integer FU, impose such a lower
bound. The resource constraint bound is: is:

7t of instructions that execute in FU type r

Tres =
(r) number of FUs of type r

(b) Program Representation

An Example Loop

In our example,

Tres (Integer FU)
Tres (FP Unit)

Tres (Load/Store Unit) =2

—I NN |

The overall resource constraint bound
T’res: 15

on T, denoted by

Tres = max(Tpes(r)) for all FU types

Thus
3

37 2
Considering both dependence and resource constraints,

the lower bound on minimum initiation interval (Tj;) for
our example with pipelined FUs is

2) =2

Tres = max(z,

Ty = max{[Tyep |, [Tres |} = max{2,2} =2

That is, any schedule of loop £ that obeys the resource
constraint will have a period greater than or equal to Ty
= 2. The smallest iteration period Tpnsn > T, for which
a resource-constrained schedule exists, is called the rate-
optimal period (with the given resource constraints) for the
given loop. It can be observed that the initiation rate L
for a given DDG may be improved by unrolling the graph a
number of times. The unrolling factor can be decided based
on either the Ty4.p or the Tr.s value, or on both. However,
for the purpose of this paper, we do not consider any un-
rolling of the graph. Though the techniques developed in
this paper can be used in those cases as well.

B. An lllustration of the OPT Problem

In this paper we investigate periodic linear schedules, un-
der which the time the various operations begin their exe-
cution are governed by a simple linear relationship. That
is, under the linear schedule considered in this paper, the
j-th instance of an instruction ¢ begins execution at time

1136

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

TABLE 1
SCHEDULE A FOR THE MOTIVATING EXAMPLE

Time Steps

0|12 13|4 56789 10| 11 || 12|13 | 14
Iteration = 0 1:0 1:1 ’1:2 1:3 1:4 i5
Iteration = 1 ’1:0 1:1 ’1:2 ’1:3 i4 ’1:5
Iteration = 2 ’I:o 1:1 1:2 i3 ’1:4
Iteration = 3 10 i1 19 13
Iteration = 4 10 11 19
Iteration = 5 1o 2 9

T-j4t;, where t; > 0 is an integer offset and T is the initi-
ation interval or the iteration period of the given schedule.
(7 is the initiation rate of the schedule.)

Table I gives a possible schedule (Schedule 4) with pe-
riod 2 for our example loop. This schedule is obtained
from the linear schedule form T'-j+1¢;, with T = 2, ¢;, = 0,
til = 2, ti2 = 4, tia = 7, ti4 = 9, and tis, = 11. Sched-
ule 4 has a prologue (from time step 0 to time step 9)
and a repetitive pattern (at time steps 10 and 11). Dur-
ing the first time step in the repetitive pattern (time step
10), 1 FP instruction (¢3), 1 Integer instruction (i), and
1 store instructions are executed, requiring 1 FP Unit, 1
Integer FU and 1 Load/Store Unit. Instructions iz, 4
and 5 are executed during the second time step (time step
11), requiring 2 FP Units and 1 Load/Store Unit. Since
this resource requirement of the repetitive pattern is less
than what 1s available in the architecture, it is a resource-
constrained schedule. Further, Schedule A is one of those
resource-constrained schedules which achieves the fastest
initiation interval (Tmin = 2).

Next let us compute the register requirement for this
schedule. In Schedule A, the instruction iy fires six times
before the first 45 fires. Since there is a data dependence be-
tween ¢g and 5, the values produced by 2 must be buffered
and accessed by 5 in order to insure correct execution of
the program. Conceptually, some sort of FIFO buffers need
to be placed between producer and consumer nodes. In this
paper we will assume that a buffer is reserved at a time step
when the instruction is issued, and remain reserved until
the last instruction consuming that value completes its ex-
ecution. The size of each buffer depends on the lifetime of
the value. Therefore, a buffer of size 6 needs to be allocated
for instruction #g. As another example, four instances of %;
are executed before the execution of the first instance of 4.
Consequently, a buffer size of 4 is required for instruction
1. In a similar way a buffer size of 1 each is required for in-
structions i3 and 24, and a buffer size of 2 is required for 5.
Instruction 25 is a STORE with no successor instructions.
Since STORE has latency 1, t5 requires 1 buffer. Thus, a
total buffer size of 15 is required for this schedule as shown
below.

Instruction Total
’1:0 ’1:1 1:2 ’1:3 1:4 1:5 Buffers
6|42 |1]1]|1 15 |

These conceptual FIFO buffers can either be directly im-
plemented using dedicated architecture features such as
circular buffers or rotating registers [24], or be mapped
to physical registers (with appropriate register moves) on
conventional architectures as described in [8], [25]. In [25],
[26], it was demonstrated that the minimum buffer require-
ment provides a very tight upper bound on the total reg-
ister requirement, and once the buffer assignment is done,
a classical graph coloring method can be subsequently per-
formed which generally leads to the minimum register re-
quirement. In this paper, we assume that such a coloring
phase will always be performed once the buffer size is de-
termined. Consequently we restrict our attention to these
FIFO buffers or logical registers.

A question of interest is: do there exist other rate-
optimal schedules of £ with the same resource constraint,
but which use fewer registers? This is exactly what we have
posed as Problem 1 (the OPT problem) in the introduction:
The answer is affirmative, and is illustrated by Schedule B
in Table IT which uses only 14 buffers. This schedule is
also resource constrained with an iteration period 2. The

values of t; for the instructions are

tiOIO tilzl ti2:3 ti3:6 ti4:8and ti5:10.

The buffer requirements for this schedule are as shown be-
low:

Instruction Total
1:0 ’1:1 1:2 ’1:3 ’1:4 ’1:5 Buffers
514121111 14

It may be verified that no schedule with period 2, sat-
isfying the resource constraint, uses less than 14 buffers.
Thus Schedule B is the solution we sought for the OPT
problem — a rate-optimal schedule for the given loop L.
Note that we generated this schedule using the formulation
outlined in Section IV-C.

C. A Schedule for Non-Pipelined FUs

Next let us focus on the issues involved in scheduling
non-pipelined FUs. When the FUs are non-pipelined, each
instruction initiated on an execution pipe continues to keep
the FU busy until it completes its execution. Thus the T,

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

1137

TABLE II
SCHEDULE B FOR THE MOTIVATING EXAMPLE
Time Steps

0111234567819 10 111213 | 14
Iteration = 0 ’1:0 ’1:1 1:2 1:3 ’1:4 i5
Iteration = 1 1:0 1:1 1:2 1:3 i4 1:5
[teration = 2 ’1:0 1:1 1:2 i3 ’1:4 ’1:5
Iteration = 3 1:0 ’1:1 ’1:2 ’1:3 1:4
[teration = 4 i | 11 19 i3
Iteration = 5 1o | 11 9

lower bound for non-pipelined FUs is:

ZiEI('r) d;
no. of FUs of type r’

Thes ("") =

where Z(r) represent the set of instructions that execute in
FU type r and d; represent the execution time of instruc-
tion 2. For the motivating example of Section II-A,

Tres(Integer FU) = %
T,..(FP Unit) = 2+§+? s
Ty.,(Load/Store Unit) = # _3
Thus,
Tres = max (%, 3, 3) =3

The lower bound Tjp is
Tip = max([Tgep |, [Tres |) = max(2,3) =3

A schedule, Schedule C| for non-pipelined FUs is shown
in Table III. In this table we use the notation, e.g. __iy
to indicate that instruction i continues its execution from
the previous time step. The repetitive pattern, starting
at time step 9, indicates that during each time step at
most 2 FP, 1 Integer, and 1 Load/Store Units are re-
quired. Thus, it appears that Schedule C' is a resource-
constrained rate-optimal schedule for non-pipelined FUs.
Unfortunately, this schedule is not legal. This is because,
for Schedule C, we cannot find a fired assignment of in-
structions to FUs. By this we mean that a compile-time
mapping of instructions to specific FUs cannot be done for
the repetitive pattern. To see this, consider the repetitive
pattern starting at time step 9. If we assign the first FP
unit to instruction 22 at time step 9, and the second FP
unit to 24 at time step 10, then we have the first FP unit
free at time step 11 and the second FP unit free at time
12 (or time step 9, taking the time steps with modulo 3).
But mapping i3 to the first FP unit at time step 11 and to
the second FP unit at time 9 implies that the instruction
13 migrates or switches from one FU to another during the
course of its execution. Such a switching is impractical.
In order to ensure that an instruction do not switch FUs

during its execution, we require that there be a fired as-
signment of instructions to FUs. Unfortunately, there does
not exist any schedule with a period T' = 3 which satisfies
the fixed FU assignment and requires only 2 FP units (in
addition to 1 Integer and 1 Load/Store unit).

As indicated in the above example, for architectures
with non-pipelined FUs, the software pipelining problem
involves not only instruction scheduling (when each in-
struction is scheduled for execution) but also mapping
(how instructions are assigned to FUs). Thus, to ob-
tain rate-optimal resource-constrained software pipelining,
we need to formulate the two related problems, namely
scheduling and mapping, in a unified framework. Section V
discusses such a formulation for non-pipelined FUs.

Table IV shows a correct software pipelined schedule for
the motivating example. In this schedule, instructions 23
and 74 share the first FP unit while 25 executes on the
second FP unit. Note that the period of the schedule is
T =4.

In order to give a proper perspective of problems ad-
dressed in this paper, a discussion on the solution space of
linear schedules is presented in the following section.

III. THE SOLUTION SPACE OF LINEAR SCHEDULES

This section presents an overall picture of the solution
space for periodic linear schedules P with which we are
working. Within this space, the set of periodic linear sched-
ules our interest is only in those periodic schedules which
use R function units or less, which is denoted by the region
labeled R. Obviously R is a subset of P. It may be noted
that the initiation intervals of some of the schedules in R
can be greater than or equal to Ty, defined in Section II-
A. Since we are interested in rate-optimal schedules, we
denote all schedules with period T,;, by the region la-
beled T. There can be periodic schedules in T which use
more than R function units.

The intersection of the sets T and R refers to the set of
schedules with a period T, and using R or less function
units. This is denoted by the region labeled TR. The sched-
ules in TR are rate-optimal under the resource constraint
R — that is there is no schedule which uses not more than
R resources, and has a faster initiation interval. In our
example loop £, Schedule A is an element of TR. By the
definition Tppip, it is guaranteed that there exists at least
one schedule with T' = T,,;» and uses R or less resources.

1138

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

TABLE III
ScHEDULE C FOR NON-PIPELINED ExEcuTION UNITS

Time Steps
0] 1 21 3 4 5) 6 7 8 9| 10| 11 12 13
Iteration = 0 1:0 ’L'1 __1:1 ’L'2 __1:2 1:3 __1:3 1:4 __1:4 i5
Iteration = 1 ’1:0 1:1 __’1:1 1:2 __’1:2 1:3 __i3 i4 __i4 1:5
Iteration = 2 ’1:0 ’1:1 __’1:1 i2 __i2 i3 __1:3 1:4
Iteration = 3 io il __il ’1:2 __’1:2
TABLE IV
ScHEDULE D WITH FIXED FU ASSIGNMENT
Time Steps
0] 1 213 41 5 6| 7 81 9| 10| 11| 12| 13
Iteration = 0 ’1:0 ’1:1] ’1:2 __1:2 3 __1:3 i4 __i4 i5
Iteration = 1 ’1:0 1:1 __’1:1 ’1:2 __’1:2 i3 __ig i4 __i4
Iteration = 2 ’1:0 il __il ig __ig ’1:3
Iteration = 3 1o i1
Schedule Space Schedule Space

(&8 TB doesnot intersect with TRB

P — Periodic Schedules
R — Schedules using R or fewer resources

(b) TB interesects TRB -- TRB is buffer optimal

T — Schedules with Period Tp.in
TB — Schedules with period Trin and minimum Buffers

TR — Schedules with period Ty, and using R or fewer resources
TRB — Schedules with period Timin, using R or fewer resources, and with minimum Buffers
TRR — Schedules with period Tpnin, using R or fewer resources, and N or fewer Registers

Fig. 2. Schedule Space of a Given Loop

Hence TR is always nonempty.

To optimally use the available registers in the architec-
ture, it is important to pick, in TR, a schedule that uses
minimum registers. The set of such schedules is denoted
by the region labeled TRB. Note that the existence of such
a schedule is guaranteed, from the fact that region TR is
nonempty and the definition of set TRB. In our example,
Schedule A4 is not a member of TRB while Schedule B is.

To put our problem statement in proper perspective, the
goal in the OPT problem (See Introduction Problem 1)
is to find a linear schedule which lies within region TRB.
However, for a compiler writer, the TRB region is only of
indirect interest in the following sense. A compiler writer
is more interested in finding a schedule with the shortest
period T using R or fewer FUs and not requiring more than

N registers, the available registers in the machine. Such
schedules form the TRR region shown in Fig. 2. The region
TRR may be contained in, may contain, may intersect, or
may be disjoint with TRB3 . One of the four relationships
is possible due to the following reasons.

(1) There is no guarantee that there exists a schedule
with period T and using N or fewer registers. In this case
TRR is null®. (2) As mentioned in Section II-B, as logical
buffers provide a good approximation to physical registers,
one can easily see that when a TRR schedule exists, it is
possible to have either all TRR schedules to be in TRB or

3For the sake clarity, in Fig. 2 we show only the case that TRR
intersects TRB.

4In this case either the next higher value of T needs to be considered
or some register spilling is required.

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

all TRB schedules to be TRR schedules. (3) Though mini-
mum buffer requirement provides a very tight upper bound
for register requirement, a minimum register schedule need
not necessarily be a minimum buffer schedule. Thus TRR
intersects TRB and TRR is not contained in TRB. (4) Last,
though very unlikely, it is possible that none of the TRR
schedules are in TRB. In this case,

TRRNTRB = ¢.

As will be seen later, it is possible to modify our formu-
lation in Sections IV and V to find a TRR schedule using
the approach followed in [26], [27]. The details of these
approaches are beyond the scope of this paper. The reader
is referred to [26] for further details. Due to the additional
complexity introduced by the above approach in modeling
register requirements directly, we restrict our attention in
this paper to finding a TRB schedule.

Lastly, in Figure 2 there is a region labeled TB which
denotes the set of all schedules with an initiation inter-
val Tpin that use the minimum number of registers. That
is, for the initiation interval Ty, , there may be schedules
which use fewer registers than those in TRB. However, a
schedule in TB may or may not satisfy the resource con-
straint R. In our example loop £, in fact, the intersection
of TB and R is empty. Figure 2(a) depicts this situation.
Of course, this is not always the case. Fig. 2(b) represents
the case when TB intersects R. Notice that in this case,
TRB is a subset of TB.

An interesting feature of the TB region is that a schedule
belonging to TB can be computed efficiently using a low-
degree polynomial time algorithm developed by Ning and
Gao [11]. As alluded to in the Introduction, this fact will
be used as a key heuristic later in searching for a solution
in TRB. More specifically, the register requirement of a
TB schedule is used as a lower bound for the number of
registers in the OPT problem.

IV. OPT-T FORMULATION FOR PIPELINED FUs

In this section, we first briefly introduce some back-
ground material. In the subsequent subsection, we develop
the integer program formulation for the OPT-T problem.
In Section IV-C| the OPT-T formulation for the motivating
example of Fig. 1 is shown.

A. Definitions

This paper deals only innermost loops. We represent
such loops with a Data Dependence Graph (DDG), where
nodes represent instructions, and arcs the dependences be-
tween instructions. With loop-carried dependences, the
DDG could be cyclic. If node i produces a result in the
current iteration and the result is used by node j, dd itera-
tions later, then we say that the arc (¢, j) has a dependence
distance dd, and we use m;; to denote it. In the DDG this
is represented by means of dd initial tokens on the arc (3, 7).

Definition 1V.1: A data dependence graph is a 4-tuple
(V, E,m,d) where V is the set of nodes, E is the set of
arcs, m = {my;,V(4,j) € E} is the dependence distance

1139

vector on arc set E, and d = {d;,Vi € V} is the delay
function on node set V.

In this paper we focus on the periodic schedule form
T j+1t; discussed in Section II. A periodic schedule is said
to be feasible if it obeys all dependence constraints imposed
by the DDG. The following lemma due to Reiter [23] char-
acterizes feasible periodic schedules.

Lemma IV.1 (Reiter [23]) The initial execution times t;
are feasible for a periodic schedule with period T if and
only if they satisfy the set of inequalities:

tj—tiZdi—T~mi]' (1)

where d; is the delay of node 4, T the period, and m;; the
dependence distance for arc (2, j).

In this paper, we assume that the rate-optimal period
Tmin 1s always an integer. If not, the given DDG can be
unrolled a suitable number of times, such that the result-
ing (unrolled) DDG has a integer period. Further, we have
concentrated in this paper on straightline code. Huff found
that a large majority of FORTRAN loops contain no condi-
tionals [7]. For loops involving conditionals, we assume
a hardware model that supports predicated execution as
in [24]. If-conversion [28] can be performed to support this
model. As well, in [13] it was shown that predicated exe-
cution simplifies code generation after modulo scheduling.

B. ILP Formulation

In order to represent the repetitive pattern, also known
as the modulo reservation table, of the software pipelined
schedule in a succinct form, we introduce the A matrix.
The matrix A is a T x N matrix where T is the period of
the schedule and N is the number of nodes in the DDG.
The element A[t,] is either 1 or 0 depending on whether
or not instruction ¢ is scheduled for execution at time step
t in the repetitive pattern.

To make things clearer, consider the repetitive pattern
of Schedule B. Here T'= 2 and N = 6. The .4 matrix is:

10 01 11
A=lad=149 11 0 0 0

The requirements of a particular FU type r at a time step ¢
can be computed by adding the elements in row ¢ which
correspond to instructions executed by FU type r. For
example, the number of FP Units required at each time
step can be calculated by adding a; 2, a3, and a;4. Thus,
it can be seen that 2 FP units are required at time step 0
and 1 FP Unit is required at time step 1. Similarly by
adding a;,;; and a;5 we can observe that the number of
Load/Store units required at each time step is 1. Thus,
in general, the number of FUs of type r required at time ¢

by a schedule is:
> o

i€Z(r)
where Z(r) denotes the set of instructions that execute in
FU type 7. If there are F. FUs in type r, then resource
constraints of the architecture can be specified as:

Z a;; < F, forallt and for all r (2)
1€Z(r)

1140

Next we concentrate on some constraints on the A ma-
trix. In order to ensure that each instruction is scheduled
exactly once in the repetitive pattern, we require that the
sum of each column in the above A matrix to be 1. This
can also be expressed as a linear constraint as:

T-1
Y ai=1 forallie[0,N —1] (3)

t=0

For Schedule B, the values of the ¢; variables used in the
linear form are:
tQIO; tlzl; t2:3; t3:6; t4:8; t5:10,
The main question is how to relate the A matrix to the ¢;

variables. For this purpose we can rewrite each ¢; as:
t; = ki * T + o; such that o; € [0,T — 1] 4)
In other words, k; and o; are defined as:
k;=t;divT and o; = t;%T
where % represents the modulo operation. For Schedule B,

kQIO, k1:0, kz:l, k3:3, k4:4, k5:5,

00=0; o0=1; o2=1; 03=0; 04=0; o05=0;

Observe both o; and .A[t,] represent the position of in-
struction ¢ in the repetitive pattern, perhaps in two differ-
ent ways. Therefore, we can express o; in terms of A[t, 1]
as:
0o
01
02
03
04
05

T

==
O OO = =O

Notice that the transpose of the A matrix is used in the
above equation. That is,

O = A’I‘ranspose % [0, I]Transpose

Using this in Equation 4 and rewriting it in the matrix
form, we obtain

to ko 1 0
ty kq 0 1
|t | | ke 0 1 0
T=1 =k | *TT]1 0 X[l] (6)
tyq k4 1 0
ts ks 1 0

Or, in general,

T=KxT + A’I‘ranspose % [0, 1, T — 1]Transpose (7)

Lastly, we need to represent the register requirements
of the schedule in a linear form. As mentioned earlier, in
this paper, we model register requirements by FIFO buffers

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

placed between producer and consumer nodes. Such an
approach was followed in [11]. Further, we assume that
buffer space is reserved as soon as the producer instruction
commences its executions and remains reserved until the
(last) consumer instruction begins its execution.

Consider an instruction ¢ and its successor j. The result
value produced by 4 is consumed by j after m;; iterations.
This duration, called the lifetime of the result, is equal to
(t; + T - my; — t;) in the periodic schedule. During this
time, ¢ would have fired (t; + T - my; — t;)/T times, and
therefore this many buffers are needed to store the output
of 2. If instruction 2 has more than one successor j, then the
register requirement for ¢ is the maximum of (¢; +T'-my; —
t;)/T, for all j. In other words, the number of buffers b;
associated with an instruction ¢ is given by

ti+T -my —t; . .

b; >]++ , Vjsuchthat (3,j) € E (8)
Rewriting Equation (8), we get

T~bi+ti—t]’ZT~m¢]’ (9)

In [25], it was demonstrated that minimum buffer require-
ment provides a very tight upper bound on the total reg-
ister requirement, and once the buffer assignment is done,
a classical graph coloring method can subsequently be per-
formed which generally leads to the minimum register re-
quirement. In this paper, we assume that such a coloring
phase will always be performed once the schedule is deter-
mined.

Now integrating the buffer requirements with our ILP
formulation, we can obtain the formulation which mini-
mizes the buffer requirements in constructing rate-optimal
resource constrained schedules. For this purpose, the ob-
jective function is minimizing the total number of buffers
used by the schedule. That is

N-1
minimize E b;
i=0

The complete ILP formulation is shown in Figure 3.

C. OPT-T Formulation for the Motwating Example

To illustrate the operation of the OPT-T formulation, we
again examine the motivating example presented in Sec-
tion II.

The minimum iteration period for the DDG in Figure 1
is T = 2. Further there are N = 6 nodes. Equation (14)
gives the dependence constraints for a feasible schedule:

t—tg > 1 ts — 1o > 1 o — b > 2
ty—t > 2 3 — 1y > 2 ty—t3 > 2
b5 —tq > 2 (16)

Equation (13) requires that a node be scheduled exactly
once:

a0+ ai,o=1 ap1+a,1=1 a2+a2=1

a3+az=1 apa+aa=1 as+a;=1

(17)

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

[ILP Formulation for Pipelined FUs]
N-1
minimize Z b;
1=0

subject to

Z at < Fr,

i€Z(r)

forallt,e [0,T—1] Vr

T K+ A" (0,1, T — (11)
T-b;+t;—t; >T my; Yic[0,N—-1],(5,5) € E (12)

1]Transpose =T

T-1
Y ai=1 forall ic[0,N —1] (13)
1=0
ti—t; >di — T -my; V(Z,]) €E (14)
b; > 0,t; > 0,k; >0, ,a;; > 0 are integers
Yie[0,N —1],vte [0, T — 1] (15)

Fig. 3. ILP formulation for Pipelined FUs

Equation (11) relates the elements of the A4 matrix to K
and T

2-ko+0-ap0+1-a1,0=1
2-k1+0-a0,1+1 a1 =%
2-k2+0-ap2+1-a12=1
2-k3+0-ap3+1-a13=1t3
2-ka+0-apa+1-a1,a=1
2-ks+0-ap5+ 1 a5 =15 (18)

The following three equations respectively represent the
resource constraints for Integer, Load/Store, and FP
units.

ap,0 <3
ao,1 + ap5 <1

aop,2 + ao,3+ags <2

0,1,0 S 3 (19)
a1 +a;; <1
a2 +aiz3+a,s <2 (21)

The register requirement for each instruction is given by
Equation (9). For the given DDG, these constraints are:

2. by +to—t >0
2.by+t —t2 >0
2. by +ts—1t3>0
2 by+ts—t5 >0

2~b0+t0—t520
2~b1+t1—t420
2~b3+t3—t420

2:b9>2 2:b,>2 (22)

Finally, the objective is to minimize the total number
of buffers Efigl b; subject to the constraints in Equa-
tions (16) — (22), and that aq, ki, t;, and b; are non-

negative integers. Solving this integer program formulation

yields Schedule B.

1141

In solving the above integer programming problem, we
need to obtain values for all a; ; variables and k; variables,
and thus obtain the values for the t; variables which deter-
mine the schedule. Each t; variable can take values only
within a specific range (determined by the dependences and
the iteration period of the DDG), which in turn will restrict
the range of ¢ for which a;; can take the value 1.

V. OPT-T FoRMULATION FOR NoN-PIPELINED FUs

In this section we develop the formulation for the OPT-T
problem for non-pipelined FUs. As illustrated in Section II-
C, this problem requires both scheduling and mapping to
be performed simultaneously. In the following section we
show how the resource usage for non-pipelined FUs can
be modeled. The formulation of the mapping problem is
discussed in Section V-B.

A. Resource Usage in Non-Pipelined FUs

In order to estimate the resource requirements with non-
pipelined FUs, we need to know not just when each instruc-
tion is initiated (given by the .4 matrix), but also how long
each executes. For example, instruction z4 in Schedule C
is initiated at time step 10 (or time 1 in the repetitive pat-
tern) and executes until time step 11. Equivalently, since
the execution time of FP Multiply is 2 time units, i4 ex-
ecutes until (1042 —1) % 3 = 2 in the repetitive pattern.
In other words, instruction 24 requires an FU at time steps
1 and 2 in the repetitive pattern. Likewise, instruction i3
requires an FU at time steps 2 and 0 in the repetitive pat-
tern. Thus we need to define a usage matrix ¢ from the A
matrix to represent the usage of non-pipelined FUs.

First we illustrate the .4 matrix and the usage matrix ¢/
for Schedule C.

A=

—_
o
—_
o

and
1 01 1 0 1
U=10 11 0 1

0 1 0 1 1 0

Notice that the FP instructions and the Load instructions
which take 2 time units to execute, require the FU for more
than one time step in the usage matrix. As before, adding
the appropriate elements of each row of U gives the FU
requirement for type r.

How do we obtain the & matrix from A7 An instruction 2
initiated at time ¢ % T requires the FU until time step (¢ +
d; —1) % T in the repetitive pattern. Alternatively, we can
say that instruction ¢ requires a function unit at time step
t if ¢+ began execution less than d; time steps prior to t.
Thus we can define U[t, 7] as:

(di—1)

Ut,i] = ug; = Z a-n%ryi, VEE,T—1], YieV
=0

(23)

1142

Notice that if the execution time d; = 1 cycle, then
Us; = ;. Since clean pipelines can initiate a new op-
eration in each cycle, the resource usage for an instruction
is, conceptually, for only one cycle. Hence in those cases,
again, uz; = ay;.

In our example loop, instructions zg and 5 take one time
unit to execute. Hence

Ubig = G, and Uy, = G,
That is,

U0,ig = @0,ip 7y Ulyig = Alyig 5 U2, = Q2,4

UD,ix — Q0,is ; Ulyis = @lis ; U245 = G244

For instruction 42, i3 and 14, u;; is defined as:

Uo,5, = @0,i; + @2,4, U1,4, = @1,4, + Qo,i,

Ug,5, = Q2,4 + Q1,4 Uo,i, = Q0,i, T 82,1,
U1,5, = Q1,i, + Q0,i, U2,5, = G2,4, + @14,
U055 = Q0,i5 T Q2,45 U155 = Q1,45 T Q0,is

U255 = Q2,5 + Q1,45 Uo,i, = Q0,i, + 82,1,

U1,5, = Q1,i, + Q0,4 U2,5, = Q2,4, + 81,4,

The requirement for type » FUs at time step ¢ is

E Ug,q-

i€Z(r)

Since this should be less than the number of available FUs,

Z up; < F, forall t€[0,T— 1] and for all » (24)
1€Z(r)

Replacing the resource constraint (Equation 10) in the ILP
formulation (refer to Figure 3) by Equations 23 and 24, we
obtain the scheduling part of the ILP formulation for non-
pipelined FUs. However, as explained in Section II-C, the
complete formulation must include the mapping part (fixed
FU assignment) as well. Otherwise the schedules produced
by the formulation may require the switching of instruc-
tions between FUs during the course of execution®. In the
following subsection we show how the mapping problem
can also be formulated under the same framework.

B. Fized FU Assignment

Consider Schedule C shown in Table III. Since the loop
kernel is repeatedly executed, we map times 9, 10, and 11
to 0, 1, and 2 as shown in Figure 4(a).

The usage of FP units is shown in Figure 4(b). Note
that the function unit used by i3 wraps around from time
2 to 0. This is a problem. At time 2, i3 begins executing
on the function unit that was used by 75 at times 0 and 1.
Since each instruction is supposed to use the same FU on

5 Alternatively, it may be possible to unroll the loop a number of
times and use different F'U assignment for the same instruction in the
unrolled iterations. However, the extent of unrolling required may be
large and may not be known a priori.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

Time Step
o 1 2
Time Steps 5 : (1
0] 1] 2 B
_13 14 | g i3 ‘:) O .
19 __19 13 :
o i | —q

Fig. 4. A Repetitive Pattern and its Resource Usage

every iteration, this causes a problem at time 0, when 23
is still executing on the FU needed by 3. The problem is
that Equation 24 only notes the number of FU’s in use at
one time, i.e. the number of solid horizontal lines present
at each of the 3 time steps in Figure 4(b). However, we
need to ensure that the two segments (corresponding to
instruction i3) get assigned to the same FU.

This problem bears a striking similarity to the problem
of assigning variables with overlapping lifetimes to differ-
ent registers. In particular, it is a circular arc coloring
problem [29]. We must ensure that the two fragments cor-
responding to i3 get the same color, a fact represented by
the dotted arc in Figure 4(b). In addition the arcs of i3
overlap with both ¢» and %4, meaning i3 must have a dif-
ferent color than either. Similarly s and ¢4 must have
different colors than each other.

Now using the usage matrix, we can formulate the color-
ing problem using integer constraints. If two instructions ¢
and j are executing at time ¢ then clearly each must get a
different FU assigned to it. That is, if ¢; and c; represent
the colors (or function unit to which they are mapped to)
of instructions 4 and j respectively, then ¢; # ¢; if both
us,; and uy; are 1. Such a constraint can be represented
in integer programming by adopting the approach given
by Hu [30]. We introduce a set of w;; integer, 0-1 vari-
ables, with one such variable for each pair of nodes using
the same type of function unit. Roughly speaking these
w; ; variables represent the sign of ¢; — ¢;.

Up; + U — 1

C; —Cy Z 5) —N~U)i,]' (25)
i i —1

oo > TN (1-wy) (26)

1<ee <N Vkel[0,N-—1] (27)

N, the number of nodes in the DDG, is an upper bound
on the number of colors.

In [22] we prove that the above constraints (Equa-
tions 25, 26 and 27) together guarantee that two nodes
¢ and j are assigned different colors (mapped to different
function units) if and only if they overlap. For our ILP for-
mulation we require that there be at least as many function

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

units as colors. Hence we replace Equation 24 with Equa-
tions 25 — 27 and
¢ <F, forallie[0,N—1]and i€ Z(r)

The complete ILP formulation is shown in Figure 5.

[ILP Formulation for Non-Pipelined FUs]
N-1
minimize Z b;
2=0

subject to

¢ <F, Vie[0,N-—1]andieZ(r) (28)

(di—1)
Ups = Z a(t-n%T)is VEE[0,T—1], and i€V (29)
1=0

T K+ A’I‘ranspose % [0, 1, . ~,T _ I]Transpose =T (30)

T-bi+t;—t; >T-my; Vie [0, N—1] and (’L,]) €EFE (31)

T-1
Y ai=1 forall ic[0,N —1] (32)
1=0
i i —1
c—cj > Ui ;m — N w;; (33)
i i —1
¢ —¢C 2 & ‘1‘"2“,3 N (1—wiy)
Vi,j € Z(r) and r (34)
tj —t; > d; —T- m;; for all (’I,,_]) €k (35)
1<cg <N forallke[0,N—1] (36)
b; > 0,t; > 0,k; >0, and a;; > 0 are integers
Vie[0,N—1], and t € [0,T — 1] (37)

Fig. 5. ILP formulation for Non-Pipelined FUs

VI. A SoruTioN METHOD FOR OPT PROBLEM

The successful formulation of the OPT-T problem pro-
vides the basis of our solution to the OPT problem. To
solve the OPT problem, we need to iteratively solve the
OPT-T formulation for increasing values of T starting from
Ty until we find a schedule satisfying the function unit con-
straint. In other words, Ty, is the smallest value greater
than or equal to Ty for which a schedule obeying the re-
source constraint exists. We want to solve the OPT-T for-
mulation with iteration period Tpnin. It has been observed
that in most cases, Tpnin, is at or near T [8], [7]. Thus using
an iterative search, starting at Ty we can quickly converge
to Tmin-

In solving the ILP formulation of the OPT-T problem,
we can guide our search by giving a lower bound on the

1143

number of buffers required. We illustrate this idea as fol-
lows. Let T be the smallest iteration period for which a
schedule obeying the function unit constraint exists. For
this value of T, by solving the minimum register opti-
mal schedule formulation proposed by Ning and Gao [11],
we can obtain a lower bound on the number of buffers.
Ning and Gao’s formulation is a linear program formulation
and can be solved efficiently. However since this formula-
tion [11] does not include resource constraints, the obtained
schedule may or may not satisfy resource constraints.

VII. PERFORMANCE OF ILP SCHEDULES

In this section we present the performance results of the
ILP scheduler. Section VIII is devoted to a comparison
with heuristic methods.

We have implemented our ILP based software pipelin-
ing method on a UNIX workbench. We have experi-
mented with 1008 single-basic-block inner loops extracted
from various scientific benchmark programs such as SPEC92
(integer and floating point), linpack, livermore, and
the NAS kernels. The DDG’s for the loops were obtained
by instrumenting a highly optimizing research compiler.
We have considered loops with up to 64 nodes in the DDG
as in [7]. The DDG’s varied widely in size, with a median
of 7 nodes, a geometric mean of 8, and an arithmetic mean
of 12.

To solve the ILP’s, we used the commercial program,
CPLEX. In order to deal with the fact that our ILP ap-
proach can take a very long time on some loops, we adopted
the following approach. First, we limited CPLEX to 3 min-
utes in trying to solve any single ILP, i.e. a maximum of 3
minutes was allowed to find a schedule at a given T. Sec-
ond, initiation intervals from [Tpnin, Trmin + 5] were tried if
necessary. Once a schedule was found before Tpim + 5, we
did not try any greater values of T

We have assumed the following execution latencies for
the various instructions. We applied our scheduling for dif-
ferent architectural configurations. We considered architec-
tures with pipelined or non-pipelined execution units. We
also considered architectures where the FUs are generic,
i.e. each FU can execute any instruction. Such FUs are re-
ferred to as homogeneous FUs. A heterogeneous FU type,
like Load/Store Unit, on the other hand, can only exe-
cute instructions of a specific type (or a class of types).
The six different architectural configurations considered in
our experiments are:

Al - 6 pipelined homogeneous FUs

A2 - 4 pipelined homogeneous FUs

A3 - 6 non-pipelined homogeneous FUs

A4 - 4 non-pipelined homogeneous FUs

A5 - pipelined heterogeneous FUs (2 Integer FUs
and one of Load/Store, FP Add, Multiply
and Divide units.)

A6 - Same as A5, but function units are

non-pipelined.

The 1008 loops were scheduled for each of these architec-

1144

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

TABLE V
LATENCIES OF INSTRUCTIONS.
Instructions: Integer | FP Add | Load | Store | Multiply | Divide
Clock cycle(s): 1 3 3 1 4 17

tures.

In a large majority of cases, the ILP approach found an
optimal schedule close to Thu;, as shown in Table VI. To
be specific, for architectures with homogeneous pipelined
FUs (A1l and A2), the ILP approach found an optimal
schedule in more than 88% of cases. For non-pipelined
homogeneous FUs, an optimal schedule was found in 71%
of the cases. Lastly, for architectures with heterogeneous
FUs (A5 and A6) it varies from 80% to 85%. For all
architectural configurations, in a small fraction of the test
cases, the ILP method found a schedule at a T greater
than a possible Tpnin. That is, in these cases, the obtained
schedule is a possible optimal schedule. We say a possible
Tmin and possible optimal schedule here since there is no
evidence — CPLEX’ 3 minute time limit expired without
indicating whether or not a schedule exists for a lower value
of Tpnin. Table VI indicates how far the schedule found was
from a possible optimal schedule.

TABLE VI
SCHEDULE QUALITY IN TERMS OF ITERATION PERIOD

Initiation Interval Number of Loops
A1 | A2| A3 | A4 | A5 | A6
T = Thin 946 | 882 | 714|699 | 854 | 792
T =Tnin+1 1 4 137139160 9
T = Trmin + 2 0 (249 |10| 18] 9
T =Tnin +3 0 4 7 5 |13] 9
T =Tnin +4 6 1 111719 9
T =Tnin+5 0 6 8 5 1 9

| No Schedule found | 5% | 87 | 232 | 233 | 53 | 166 ||

Next we proceed to compare how close the ILP sched-
ules were to the optimal buffer requirement. In deriving
minimal buffer, rate-optimal schedules, CPLEX’s 3 minute
time limit was sometimes exceeded before finding a buffer
optimal schedule. In those cases we took the best schedule
obtained so far. In other words, this could be one of the
schedule from the set TR in Fig. 2. Once again, this sched-
ule could possibly lie in TRB, but there is no evidence —
for or against — as the 3 minute time limit of CPLEX was
exceeded. We compare the buffer requirement of this sched-
ule with that of a TB schedule obtained from the Ning-Gao
formulation [11]. We note again that the Ning-Gao formu-
lation obtains minimal buffer, rate optimal schedules us-
ing linear programming techniques and does not include
resource constraints. Thus the bound obtained from Ning-
Gao’s formulation is a loose lower bound, and there may
or may not exist a resource-constrained schedule with this
buffer requirement. Let us denote the buffer requirement

of TB, TR, and TRB schedules by Btg, Btr, and Bygrp re-
spectively. Then Btg > Btrs > Btg. To compare the
quality of schedules, we take the minimum buffer require-
ment B,.;n as Btrg If a TRB schedule is found and Btg
otherwise. Thus, when a TRB schedule is not found, B
is an optimistic lower bound.

Table VII shows the quality of ILP schedules in terms
of their buffer requirements. Here we consider only those
cases where the ILP approach found a schedule, optimal
or otherwise. As can be seen from this table, the ILP ap-
proach produces schedules that require minimal buffers in
85% to 90% of the cases for architectures involving hetero-
geneous FUs (pipelined or non-pipelined) or homogeneous
pipelined FUs (6 or 4 FUs). For architectures with ho-
mogeneous non-pipelined FUs (A3 and A4) the quality
of schedule, in terms of both computation rate (1/T) and
buffer requirement is poor compared to all other architec-
tural configurations. This is due to the increased complex-
ity of mapping rather than scheduling. The complexity
of mapping instructions to FUs is significantly higher for
homogeneous FU than for heterogeneous FUs. This is be-
cause, each instruction can potentially be mapped to any
of the FUs, and hence the overlap (in execution) of all
pairs of instructions needs to be considered. On the
other hand, in the heterogeneous model, we only need to
consider all pairs of instructions that are executed
in the same FU type.

TABLE VII
SCHEDULE QUALITY IN TERMS OF BUFFER REQUIREMENT

Initiation Interval Number of Loops
A1 | A2 | A3 | A4 | A5 | A6
B = Bpnin 916 | 846 | 710 | 696 | 804 | 766
B = Bpin +1 0 1132283317
B = Bpin + 2 4 4 121]25]22]| 8
B = Bin + 3 1 5 7 8 |20 33
B = Bnin + 4 2 21| 5 | 15|20 | 6
B = Bmin +5 2 17| 1 1 6 6
B > Bmin +5 28 1270 2 50| 6

Finally, how long did it take to get these schedules?
We measured the execution time (henceforth referred to
as the compilation time) of our scheduling method on a
Sun/Sparc20 workstation. The geometric mean, arithmetic
mean, and median of the execution time for the 6 architec-
tural configurations are shown in Table VIII. A histogram
of the execution time for various architectural configura-
tions is shown in Figure 6. From Table VIII we observe
that the geometric mean of execution time is less than
is less than 2 seconds for architectures with homogeneous

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

[Noschedules
- > 600 seconds

[120600 Seconds

Il 30120 Seconds

[] 530Seconds
Il 25 seconos
D 1-2 Seconds
- <1 Second

% of Test Cases

Al A2 A3 A4 A5 A6

Architectures

Fig. 6. Histogram of Execution Time

pipelined FUs and less than 5 seconds for architectures with
heterogeneous FUs. The median of the execution time is
less than 3 seconds for all cases. Architectural configura-
tions A3 and A4 (with homogeneous non-pipelined FUs)
required a larger execution time compared to other config-
urations due to increased complexity in mapping instruc-
tions.

TABLE VIII
AVERAGE EXECUTION TIME TO OBTAIN ILP SCHEDULES

Architecture Execution Time
Geo. Mean | Median | Arith. Mean
Al 0.90 0.63 13.0
A2 1.80 0.65 35.9
A3 6.60 2.65 63.1
A4 7.40 2.73 74.5
A5 4.00 1.70 73.6
A6 4.70 2.35 55.7

We conclude this section by noting that even though our
ILP based scheduling method was successful in a large ma-
jority of test cases, it still could not find a schedule for
15% to 20% of the test cases in the given time limit and
the number of tries. For these cases, there are a number
of alternatives: (1) allow the ILP more than 3 minutes,
(2) change the order in which the ILP solver attempts
to satisfy the constraints, (3) move to some other exact
approach such as enumeration [26], (4) fall back to some
heuristic. We have made no systematic investigation of (1)
and (2), although have found that each is successful for
some loops. Enumeration achieves about the same num-
ber of loops scheduled as the ILP approach described here,
although the loops successfully scheduled by the two ap-
proaches are not identical [26]. The ILP approach can be
used as the basis for some heuristics. For example, heuris-
tic limits on the scheduling times of each node could be
added as constraints to the ILP.

1145

VIII. CoMPARISON WITH HEURISTIC METHODS

Our extensive experimental evaluation indicates that the
ILP approach can obtain the schedule for a large majority
of the test cases reasonably quickly. But does the optimal-
ity objective and the associated computation cost pay off
in terms computation rate or buffer requirement of the de-
rived schedules? It is often argued that existing heuristic
methods (without any mathematical optimality formula-
tion) do very well and consequently there is no need to
find optimal schedules. Our results indicate otherwise.

We consider 3 leading heuristic methods for compara-
tive study. They are Huff’s Slack Scheduling [7], Wang,
Eisenbeis, Jourdan and Su’s FRLC [31], and Gasperoni and
Schwiegelshohn’s Modified List Scheduling [20]. In partic-
ular, we compare our ILP approach with all 3 schedul-
ing methods for architecture configurations with pipelined
FUs. As the Modified List Scheduling and FRLC methods
do not handle non-pipelined FUs, comparison of the ILP
approach is restricted to Huff’s Slack Scheduling method
for non-pipelined architectures (A3, A4, and A6).

Table IX compares the computation rate and buffer re-
quirements of ILP schedules with those of the heuristic
methods for various architectural configurations. In par-
ticular, columns 3 and 4 tabulate the number of loops in
which the ILP schedules did better and the percentage im-
provement in Tpm;n achieved. Similarly columns 8 and 9
represent the improvements in buffer requirements. Due to
the approach followed in obtaining the ILP schedules — re-
stricting the time to solve an ILP problem to 3 minutes and
trying a schedule for the next (higher) T value (sub-optimal
schedules) — the computation rate and/or the buffer re-
quirements of ILP schedules are greater than the heuristic
methods in a small fraction of the test cases. Columns
5 and 6 represent, respectively, the number of test loops
and the percentage improvement in Tp,;, achieved by the
heuristic methods. Columns 10 and 12 in Table IX are for
buffer improvements. Note that the buffer requirements
are compared only when the corresponding schedules had
the same iteration period.

As can be seen from Table IX| Huff’s Slack Scheduling
method performed equally well (or better) in terms of iter-
ation period for homogeneous FUs. Huff’s method found
faster schedules in 3% to 8% of the test cases, especially
when the FUs are homogeneous and non-pipelined. How-
ever, with heterogeneous FUs, ILP schedules are faster in
13% to 20% of the test cases for architectures A5 and A6.
In these cases, the ILP schedules are faster on the average
by 13% to 15% as shown in column 4 of Table IX. Further,
the high computation costs of ILP schedules pay significant
dividends in terms of buffer requirements for all architec-
ture configurations. In more than 45% of the test cases
(when the corresponding schedules have the same iteration
period), the buffer requirements of ILP schedules are less
than those of Huff’s Slack Scheduling method. The geo-
metric mean of the improvement (in buffer requirements)
achieved by the ILP schedules range from 15% to 22%.

Compared to Gasperoni’s modified list scheduling and

Wang, et al’s FRLC method, ILP produced faster sched-

1146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

TABLE IX
COMPARISON WITH HEURISTIC METHODS

Tonin Buffer Requirements
ILP Better Heuristic Same ILP Better Heuristic Same
Better Better
Archi- | Heuristic || # of % # of % #of || # of % 7 of % # of
tecture | Method Loops | Impr. || Loops | Impr. || Loops || Loops | Impr. || Loops | Impr. || Loops
Pipelined Architectures
Huff 0 0 7 38 946 618 15 35 16 293
Al FRLC 211 47 6 19 736 640 24 5 6 91
Gasperoni 223 48 4 27 726 604 17 13 7 101
Huff 0 0 39 28 882 557 17 64 13 261
A2 FRLC 187 36 13 19 721 613 25 20 8 88
Gasperoni 194 35 14 18 699 551 19 39 11 109
Huff 137 13 35 6 766 210 18 55 11 210
A5 FRLC 250 33 35 4 665 586 29 5) 74
Gasperoni 394 26 28 4 533 463 20 13 5 57

Non-Pipelined Architectures

[A3 [Huff [0] 0 [63 [14 [713 J 491 [20 [34 [12 [188]
| A4 [Huff I 1 | 7 | 8 | 22 [689 [478 | 21 [39 | 13 [172 |
[A6 [Huff [190 T 15 | 9 [10 [638 [478 | 22 [14 [12 [146]

ules in 18% to 40% (or 187 to 394) of the test cases for
the various architectural configurations considered. The
improvement in Tp.;, achieved by the ILP schedules are
significant, 26% to 48%. This means that the schedules
generated by the ILP method can run 50% faster than
those generated by the FRLC method or the modified list
scheduling method. These heuristic methods score well in a
small fraction (up to 3%) of the test cases. Once again the
buffer requirements of ILP schedules are better (by 17% to
29%) than FRLC or modified list scheduling in 460 to 640
test cases.

The most attractive feature of the heuristic methods is
their execution time. The execution time for any of the
heuristic methods was less than 1 second for more than
90% of the loops. The mean execution time was less than
0.25 second for all the architectural configurations. Of the
three heuristic methods, Huff’s Slack Scheduling method
required slightly more computation time.

Our experiments reveal that the ILP-based optimal
scheduling method does produce good schedules though at
the expense of a longer compilation time. With the advent
of more efficient ILP solvers, the compilation time is likely
to decrease in future. Irrespective of the high compilation
costs, our experiments suggest the possible use of the ILP
approach for performance critical applications. In the fol-
lowing subsection we present a case for the ILP approach
even though the use of such an approach in production
compilers is debatable.

A. Remarks

We hope that the experimental results presented in this
and in the previous section will help the compiler com-
munity in the assessment of the ILP based exact method.

Despite a reasonably good performance in a large major-
ity of the test cases, the use of ILP based exact methods
in production compilers remains questionable. However, in
the course of our experiments, we noticed that many loop
bodies occur repeatedly in different programs. We devel-
oped a tool that analyzes whether two DDGs are similar in
the sense that they (1) execute the same operations — or
at least execute operations with the same latency and on
the same function unit, and (2) have the same set of edges
and dependence distances between those operations.

We found that out of our 1008 test cases, there are only
415 loops that are unique. One loop body was common to
73 different loops! The repetition of loop bodies, on the
one hand, implies that our benchmark suite consists only
of 415 unique test cases (rather than 1008); on the other
hand, it suggests the number of distinct loops appearing in
scientific programs is limited, and the compiler could use
our ILP approach to precompute optimal schedules for the
most commonly occurring loops. This scheme could also
be tailored to individual users by adding new loops to the
database as the compiler encounters them. In fact, the ILP
computation could be run in the background, so that the
user may get non-optimal code the first time his/her code
is compiled, but on later compilations the desired schedule
would be in the database.

The complexity of the tool to analyze whether two DDGs
are similar is O(E*) in the worst case, but O(E) in the
average case, where F is the number of edges in the DDG,
and in most cases F &~ N, the number of nodes in the DDG.
53 seconds were required on a Sun/Sparc20 to find the 415
unique loops out of the 1008, i.e. about 53 milliseconds per
loop For practical use, the tool requires that a database
of DDGs and their schedules stored in an encoded form.

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

DDG Size vs. Multiplicity
T T

60 % ;
[e]
501 1
8 & 8
‘é’4of g o 1
E 8
§ o
301 3 1
4
s 8¢
g o
S0l 1 2 o :
Z Y0 o o 7
o
g
o
o o
10 o [¢] [e] 4
§ o 8 g o o (o] © IS IS
c ©° 8 8
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 10 12 14 16

8
Multiplicity

Execution Time on Architecture A4

10 @ @ @ @ T >

[e]e)

@
E o o o
=
S 102 4
S10 o
é e o
I o
w o °
o
10'F o E
o
o ° o o
g o o © o o
s 8 o °
o ls] o o ©9 8 o
10 . i ! . . .
0 4 6 8 10 12 14 16
Multiplicity

1147

Execution Time on Architecture Al

10 @ @ T T
10° | o ©O i
o o
o © o ¢}
2102 L © 4
Elo ht
8 e
g o °
X 1
wio i 8 E!
° o
o
0 8 °
10" F g 8 E
E 8 @ o 8 © o o g o [
10’1 Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16
Multiplicity

Execution Time on Architecture A6

10 @ @ @ T T &

Execution Time
=
o
T

1
10'F S ° 6 ° o E
o
o
g o
o o © ° o
o
" § 9 °8o0¢ , oo,
0 4 6 8 10 12 14 16
Multiplicity

Fig. 7. Analysis of DDGs in Benchmark Suite

The number of DDGs (in the database) that are compared
with a given loop can be drastically reduced by a simple
comparison of the number of nodes and the number of arcs

of the DDGs.

One last question remains on the usefulness of such a
database of DDGs and their precompiled schedules: How
many of these (precompiled) schedules required a longer
compilation time? This question is relevant because if the
database of DDGs only contain loops for which the sched-
ule can anyway be found in a shorter compilation time, it
perhaps will take lesser time to determine the schedule than
to search the database. We investigate this by plotting the
compilation time of the 415 unique loops against multiplic-
ity — how often does this DDG repeat in the benchmark
suite. We also plot the size of the DDGs versus multiplicity
in Fig. 7.

As can be seen from Figure 7, though the repetition
of DDGs is more common when the size of the DDG is
small, large DDGs do repeat, perhaps with a low degree
of multiplicity (2 to 6). The plots on compilation time
of DDGs (for various architectural configurations) against
multiplicity also indicate similar results; i.e. though a ma-

jority of the database is likely to contain DDGs that take
shorter compilation time, there does exist DDGs which re-
quire longer compilation time and repeat in the benchmark
suite, perhaps with a low degree of multiplicity. This is es-
pecially true for architectural configurations A3 to A6.
Our initial results only show that DDGs that require
longer compilation time do repeat, though with a lower de-
gree of multiplicity. However, it does not study the trade-
off involved in the cost of storing database of loops with
their precompiled schedules and the advantage in obtain-
ing optimal schedules quickly. Such a tradeoff determines
the usefulness of the database approach. Further study is
required to derive stronger and conclusive results.

IX. RELATED WORK

Software pipelining has been extensively studied [2], [4],
151, (6], 8], [12], [14], [15], [32], [13], [7), [14], [19], and
a variety of techniques have been suggested for finding a
good schedule with bounded function units. Readers are
referred to [33] for a comprehensive survey.

Lam [8] proposed a resource-constrained software
pipelining method using list scheduling and hierarchical re-

1148

duction of cyclic components. Our A matrix is similar to
her modulo resource reservation table, a concept originally
due to Rau and Glaeser [12]. Both as she put it, “rep-
resent the resource usage of the steady state by mapping
the resource usage of time ¢t to that of ¢ mod T.” Lam’s
solution of the OPT problem was also iterative. Huff’s
Slack Scheduling [7] is also an iterative solution to the OPT
problem. His heuristics (i) give priority to scheduling nodes
with minimum slack in the time at which they can be sched-
uled, and (ii) try to schedule a node at a time which mini-
mizes the combined register pressure from node inputs and
outputs. He reported extremely good results in addressing
the OPT problem. Other heuristic-based scheduling meth-
ods have been proposed by Wang et al [19], and Gasperoni
and Schwiegelshohn [20]. We have compared how the ILP
schedules perform against these three scheduling methods
in Section VIII.

The FPS compiler [12], the Cydra 5 compiler, CydrizT™
Fortran [34], [4], and the HP-PA compiler [35] are produc-
tion compilers based on heuristic methods implementing
resource-constrained software pipelining. Rau et al. [13]
have addressed the problem of register allocation for mod-
ulo scheduled loops. In their method register allocation
is performed on already scheduled loops. Different code
generation schema for modulo scheduled loops have been
discussed in [36]. In [37], a Petri net based approach to
Software pipelining loops in the presence of resource con-
straints has been presented. Ebcioglu et al. have proposed
the technique of enhanced software pipelining with resource
constraints [5], [6], [38]. Related work in scheduling graphs
in the presence of conditionals have been reported in [21].
Ning and Gao [11] proposed an efficient method of obtain-
ing a software-pipelined schedule using minimum buffers
for a fixed initiation rate. However, they did not address
function unit requirements in their formulation. In com-
parison to all these, our approach tries to obtain fastest
computation rate and minimum buffers under the given
resource constraints.

In [39] Feautrier independently gave an ILP formula-
tion similar to our method. However his method does
not include FU mapping for non-pipelined execution units.
Eichenberger, Davidson and Abraham [27] have proposed a
method to minimize the maximum number of live values at
any time step for a given repetitive pattern by formulating
the problem as a linear programming problem. However,
their approach start with a repetitive pattern that already
satisfies resource constraints. It is possible to incorporate
their approach in our formulation and model register di-
rectly, rather than through logical buffers. Such an ap-
proach was independently developed and incorporated in
our formulation by Altman [26]. Hwang et al. have pro-
posed an integer programming formulation for scheduling
acyclic graphs in the context of high-level synthesis of sys-
tems [40].

X. CONCLUSIONS

In this paper we have proposed a method of constructing
software pipelined schedules that use minimum buffers and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

run at the fastest iteration rate for the given resource con-
straints. A graph coloring method can be applied to the
obtained schedule to get a schedule that uses minimum reg-
isters. Our approach is based on an integer programming
formulation. The formulation is quite general in that (1) it
can be used to provide a compiler option to generate faster
schedules, perhaps at the expense of longer compilation
time, especially for performance-critical applications; and
(2) since our formulation has precisely stated optimality
objectives, it can be used to ascertain the optimal solution
and hence evaluate and improve existing/newly proposed
heuristic methods.

We have empirically established the usefulness of our
formulation by applying it to 1008 loops extracted from
common scientific benchmarks on six different architecture
models with varying degrees of instruction-level parallelism
and pipelining. Our experimental results based on these
benchmark loops indicate that our method can find an op-
timal schedule — optimal in terms of both computation
rate and register usage — for a large majority of test cases
reasonably fast. The geometric mean time to find a sched-
ule was less than 5 seconds and the median was less than
3 seconds. Even though our ILP method takes longer, it
produced schedules with smaller register requirements in
more than 60% of the test cases. ILP schedules are faster
(better computation rate) than their counterparts in 14%
of the test cases (on the average). We believe that the re-
sults presented in this paper will be helpful in assessing the
tradeoffs of ILP based exact methods for software pipelin-
ing.

ACKNOWLEDGMENTS

Kemal Ebcioglu, Mayan Moudgill, and Gabriel M. Sil-
berman were instrumental in completing this paper. We
wish to thank Qi Ning, Vincent Van Dongen, and Philip
Wong and the anonymous referees for their helpful sugges-
tions. We are thankful to IBM for its technical support,
and acknowledge the Natural Science and Engineering Re-
search Council (NSERC) and MICRONET, Network Cen-
tres of Excellence, support of this work.

REFERENCES

[1] A. Aiken, “Compaction-based parallelization,” Technical Report
TR 88-922, Department of Computer Science, Cornell Univer-
sity, Ithaca, New York, June 1988. PhD thesis.

[2] A. Aiken and A. Nicolau, “Optimal loop parallelization,” in Pro-
ceedings of the SIGPLAN ’88 Conference on Programming Lan-
guage Design and Implementation, (Atlanta, Georgia), pp. 308—
317, June 22-24, 1988. SIGPLAN Notices, 23(7), July 1988.

[3] A. Aiken and A. Nicolau, “A realistic resource-constrained
software pipelining algorithm,” in Advances in Languages and
Compilers for Parallel Processing (A. Nicolau, D. Gelernter,
T. Gross, and D. Padua, eds.), Research Monographs in Parallel
and Distributed Computing, ch. 14, pp. 274-290, London, Eng-
land, and Cambridge, Massachusetts: Pitman Publishing and
the MIT Press, 1991. Selected papers from the Third Workshop
on Languages and Compilers for Parallel Computing, Irvine,
California, August 1-3, 1990.

[4] J. C. Dehnert and R. A. Towle, “Compiling for Cydra 5,” Jour-
nal of Supercomputing, vol. 7, pp. 181-227, May 1993.

[5] K. Ebcioglu, “A compilation technique for software pipelining of
loops with conditional jumps,” in Proceedings of the 20th Annual
Workshop on Microprogramming, (Colorado Springs, Colorado),
pp. 69-79, December 1-4, 1987.

GOVINDARAJAN ET AL: A FRAMEWORK FOR RESOURCE-CONSTRAINED RATE-OPTIMAL SOFTWARE PIPELINING

(6]

10]

(11]

(12]

(13]

(14]

15]

(16]

(17]

18]

(19]

(20]

(21]

(22]

K. Ebcioglu and A. Nicolau, “A global resource-constrained
parallelization technique,” in Conference Proceedings, 1989 In-
ternational Conference on Supercomputing, (Crete, Greece),
pp. 154-163, June 5-9, 1989.

R. A. Huff, “Lifetime-sensitive modulo scheduling,” in Proceed-
ings of the ACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation, (Albuquerque, New Mex-
ico), pp. 258-267, June 23-25, 1993. SIGPLAN Notices, 28(6),
June 1993.

M. Lam, “Software pipelining: An effective scheduling technique
for VLIW machines,” in Proceedings of the SIGPLAN 88 Con-
ference on Programming Language Design and Implementation,
(Atlanta, Georgia), pp. 318-328, June 22-24, 1988. SIGPLAN
Notices, 23(7), July 1988.

S.-M. Moon and K. Ebcioglu, “An efficient resource-constrained
global scheduling technique for superscalar and VLIW proces-
sors,” in Proceedings of the 25th Annual International Sympo-
stum on Microarchitecture, (Portland, Oregon), pp. 55-71, De-
cember 1-4, 1992. SIG MICRO Newsletter 23(1-2), December
1992.

A. Nicolau, K. Pingali, and A. Aiken, “Fine-grain compila-
tion for pipelined machines,” Technical Report TR 88-934, De-
partment of Computer Science, Cornell University, Ithaca, New
York, 1988.

Q. Ning and G. R. Gao, “A novel framework of register allocation
for software pipelining,” in Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, (Charleston, South Carolina), pp. 29—
42, January 10-13, 1993.

B. R. Rau and C. D. Glaeser, “Some scheduling techniques
and an easily schedulable horizontal architecture for high per-
formance scientific computing,” in Proceedings of the 14th An-
nual Microprogramming Workshop, (Chatham, Massachusetts),
pp- 183-198, October 12-15, 1981.

B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker,
“Register allocation for software pipelined loops,” in Proceed-
ings of the ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation, (San Francisco, Califor-
nia), pp. 283-299, June 17-19, 1992. SIGPLAN Notices, 27(7),
July 1992.

R. F. Touzeau, “A Fortran compiler for the FPS-164 scientific
computer,” in Proceedings of the SIGPLAN ’84 Symposium on
Compiler Construction, (Montréal, Québec), pp. 48-57, June
17-22, 1984. SIGPLAN Notices, 19(6), June 1984.

V. Van Dongen, G. R. Gao, and Q. Ning, “A polynomial time
method for optimal software pipelining,” in Proceedings of the
Conference on Vector and Parallel Processing, CONPAR-92,
no. 634 in Lecture Notes in Computer Science, (Lyon, France),
pp. 613-624, Springer-Verlag, September 1-4, 1992.

P. Feautrier, “Dataflow analysis of scalar and array references,”
International Journal of Parallel Programming, vol. 20, no. 1,
pp. 23-53, 1991.

L. J. Hendren and G. R. Gao, “Designing programming lan-
guages for analyzability: A fresh look at pointer data struc-
tures,” in Proceedings of the 1992 International Conference on
Computer Languages, (Oakland, California), pp. 242-251, IEEE
Computer Society Press, April 20-23, 1992.

J. J. Dongarra and A. R. Hinds, “Unrolling loops in FOR-
TRAN,” Software — Practice and Experience, vol. 9, pp. 219—
226, March 1979.

J. Wang, C. Eisenbeis, M. Jourdan, and B. Su, “DEcomposed
Software Pipelining: A new approach to exploit instruction-level
parallelism for loop programs,” Research Report No. 1838, Insti-
tut National de Recherche en Informatique et en Automatique
(INRIA), Rocquencourt, France, January 1993.

F. Gasperoni and U. Schwiegelshohn, “Efficient algorithms for
cyclic scheduling,” Research Report RC 17068, IBM T. J. Wat-
son Research Center, Yorktown Heights, New York, 1991.

N. J. Warter, S. A. Mahlke, W. mei W. Hwu, and B. R. Rau,
“Reverse if-conversion,” in Proceedings of the ACM SIGPLAN
’98 Conference on Programming Language Design and Imple-
mentation, (Albuquerque, New Mexico), pp. 290-299, June 23—
25, 1993. SIGPLAN Notices, 28(6), June 1993.

E. R. Altman, R. Govindarajan, and G. R. Gao, “Scheduling and
mapping: Software pipelining in the presence of structural haz-
ards,” in Proceedings of the ACM SIGPLAN ’95 Conference on

Programming Language Design and Implementation, (La Jolla,

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

35]

(36]

(37]

(38]

(39]

40]

1149

California), pp. 139150, June 18-21, 1995. SIGPLAN Notices,
30(6), June 1995.

R. Reiter, “Scheduling parallel computations,” Journal of the
ACM, vol. 15, pp. 590-599, October 1968.

B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra
5 departmental supercomputer — design philosophies, decisions,
and trade-offs,” Computer, vol. 22, pp. 12-35, January 1989.
Q. Ning, Register Allocation for Optimal Loop Scheduling. PhD
thesis, McGill University, Montréal, Québec, 1993.

E. R. Altman, Optimal Software Pipelining with Function
Unit and Register Constraints. PhD thesis, McGill University,
Montréal, Québec, October 1995.

A. E. Eichenberger, E. S. Davidson, and S. G. Abraham, “Min-
imum register requirements for a modulo schedule,” in Pro-
ceedings of the 27th Annual International Symposium on M-
croarchitecture, (San Jose, California), pp. 75-84, November 30—
December2, 1994.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conver-
sion of control dependence to data dependence,” in Conference
Record of the Tenth Annual ACM Symposium on Principles of
Programming Languages, (Austin, Texas), pp. 177-189, January
24-26, 1983.

L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji, “A
register allocation framework based on hierarchical cyclic inter-
val graphs,” in Proceedings of the 4th International Conference
on Compiler Construction, CC ’92 (U. Kastens and P. Pfahler,
eds.), no. 641 in Lecture Notes in Computer Science, (Paderborn,
Germany), pp. 176-191, Springer-Verlag, October 5-7, 1992.

T. C. Hu, Integer Programming and Network Flows, p. 270.
Addison-Wesley Publishing Company, 1969.

J. Wang and E. Eisenbeis, “A new approach to software pipelin-
ing of complicated loops with branches,” research report no.,
Institut National de Recherche en Informatique et en Automa-
tique (INRIA), Rocquencourt, France, January 1993.

G. Gao and Q. Ning, “Loop storage optimization for dataflow
machines,” in Proceedings of the Fourth International Workshop
on Languages and Compilers for Parallel Computing (U. Baner-
jee, D. Gelernter, A. Nicolau, and D. Padua, eds.), no. 589 in
Lecture Notes in Computer Science, (Santa Clara, California),
pp. 359-373, Intel Corp., Springer-Verlag, August 7-9, 1991.
Published in 1992.

B. R. Rau and J. A. Fisher, “Instruction-level parallel process-
ing: History, overview and perspective,” Journal of Supercom-
puting, vol. 7, pp. 9-50, May 1993.

J. C. Dehnert, P. Y.-T. Hsu, and J. P. Bratt, “Overlapped loop
support in the Cydra 5,” in Proceedings of the Third Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, (Boston, Massachusetts),
pp. 2638, April 3-6, 1989. Computer Architecture News, 17(2),
April 1989; Operating Systems Review, 23, April 1989; SIG-
PLAN Notices, 24, May 1989.

S. Ramakrishnan, “Software pipelining in PA-RISC compilers,”
Hewlett-Packard Journal, pp. 39-45, June 1992.

B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, “Code gen-
eration schema for modulo scheduled loops,” in Proceedings of
the 25th Annual International Symposium on Microarchitecture,
(Portland, Oregon), pp. 158-169, December 1-4, 1992. SIG MI-
CRO Neuwsletter 23(1-2), December 1992.

M. Rajagopalan and V. H. Allan, “Efficient scheduling of fine
grain parallelism in loops,” in Proceedings of the 26th Annual
International Symposium on Microarchitecture, (Austin, Texas),
pp- 2-11, December 1-3, 1993.

K. Ebcioglu and T. Nakatani, “A new compilation technique for
parallelizing loops with unpredictable branches on a VLIW ar-
chitecture,” in Languages and Compilers for Parallel Computing
(D. Gelernter, A. Nicolau, and D. Padua, eds.), Research Mono-
graphs in Parallel and Distributed Computing, ch. 12, pp. 213—
229, London, England, and Cambridge, Massachusetts: Pitman
Publishing and the MIT Press, 1990. Selected papers from the
Second Workshop on Languages and Compilers for Parallel Com-
puting, Urbana, Illinois, August 1-3, 1989.

P. Feautrier, “Fine-grain Scheduling under Resource Con-
straints,” in Seventh Annual Workshop on Languages and Com-
pilers for Parallel Computing, (Ithaca, USA), August 1994.
C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach
to the scheduling problem in high-level synthesis,” IFEE Trans-
actions on Computer-Aided Design, vol. 10, pp. 464-475, April
1991.

1150 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 11, NOVEMBER 1996

R. Govindarajan received his Ph.D. Degree
in Computer Science from the Indian Insti-
tute of Science, Bangalore, India, in 1989. He
received his Bachelor’s degree in Engineering
from the same institute earlier in 1984, and his
Bachelor’s degree in Science in 1981 from the
University of Madras, Madras, India. He has
worked as an Assistant Professor in the Depart-
ment of Electrical Engineering, McGill Univer-
sity, Montreal, Canada from 1992-94, and in
the Department of Computer Science, Memo-
rial University of Newfoundland, St. John’s, Canada, from 1994-95.
Currently, he is working as an Assistant Professor in the Supercom-
puter Education and Research Center and in the Department of Com-
puter Science and Automation, Indian Institute of Science, Bangalore,
India. His research interests are in the areas of instruction schedul-
ing, dataflow and multithreaded architectures, programming model
and scheduling of DSP applications, and performance evaluation. R.
Govindarajan is a member of the IEEE Computer Society.

Erik R. Altman received his M.S. and Ph.D.
degrees in Electrical Engineering from McGill
University in 1991 and 1995, respectively. He
received his Bachelor’s degree in Electrical En-
gineering and Computer Science from the Mas-
sachusetts Institute of Technology in 1985.
From 1985 to 1989 he worked for several small
firms: TEK Microsystems, Machine Vision In-
ternational, and Bauer Associates. Currently
he is a Research Staff Member at the IBM T.J.
Watson Research Center in Yorktown Heights,
New York. His research interests are in the areas of VLIW architec-
tures and compilers, simulation, instruction scheduling, and caches.

Guang R. Gao received his SM and Ph.D
degree from the Massachusetts Institutes of
Technology in 1982 and 1986 respectively. He
has been a faculty member at McGill Univer-
sity since 1987, where he is the founder and
a leader of the Advanced Compilers, Archi-
tectures and Parallel Systems (ACAPS) lab-
oratory. His research interests have centered
around high-performance architectures and op-
timizing compilers. He has authored and co-
authored more than 100 technical papers on
the topics of computer architecture, parallelizing compilers, code op-
timization, parallel processing, data-flow and multithreaded program
execution models and architectures. He has edited several research
monographs and has chaired and co-chaired a number international
meetings, workshops, and conferences in his research area. He has
been a consultant for several computer industry and government re-
search institutions. Currently, he is a co-editor of the Journal on
Programming Languages. He has been a member of the program
committees or organizing committee of many international confer-
ences in his field.

Dr. Gao is a Senior Member of IEEE, and a member of ACM,
SIGARCH and IEEE Computer Society.

