
A Novel Cache Architecture and Placement
Framework for Packet Forwarding Engines

Kaushik Rajan and Ramaswamy Govindarajan, Senior Member, IEEE

Abstract—Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. With the
requirement to process packets at line rates, high-performance routers need to forward millions of packets every second with each
packet needing up to seven memory accesses. Earlier work shows that a single cache for the nodes of a trie can reduce the number of
external memory accesses. It is observed that the locality characteristics of the level-one nodes of a trie are significantly different from
those of lower level nodes. Hence, we propose a heterogeneously segmented cache architecture (HSCA) which uses separate caches
for level-one and lower level nodes, each with carefully chosen sizes. Besides reducing misses, segmenting the cache allows us to
focus on optimizing the more frequently accessed level-one node segment. We find that due to the nonuniform distribution of nodes
among cache sets, the level-one nodes cache is susceptible to high conflict misses. We reduce conflict misses by introducing a novel
two-level mapping-based cache placement framework. We also propose an elegant way to fit the modified placement function into the
cache organization with minimal increase in access time. Further, we propose an attribute preserving trace generation methodology
which emulates real traces and can generate traces with varying locality. Performance results reveal that our HSCA scheme results in
a 32 percent speedup in average memory access time over a unified nodes cache. Also, HSCA outperforms IHARC, a cache for
lookup results, with as high as a 10-fold speedup in average memory access time. Two-level mapping further enhances the
performance of the base HSCA by up to 13 percent leading to an overall improvement of up to 40 percent over the unified scheme.

Index Terms—Special-purpose and application-based systems, design, performance, experimentation, cache architectures, network
processors, synthetic trace generation, trace driven simulation.

˙

1 INTRODUCTION

THE ever increasing demand for network bandwidth and
the need to support sophisticated streaming applica-

tions entail that routers process packets at higher line rates.
Due to the memory-intensive nature of packet forwarding,
modern day routers are constrained by the performance of
the memory system rather than the processing capability.
One of the key functionalities of routers is to forward
incoming packets through an appropriate output port. This
involves looking in a table of prefixes, finding the longest
prefix match (LPM) for the destination IP-address, and
using the corresponding output port.

Most algorithms used for LPM make use of a trie data
structure to store the contents of the routing table [4], [29].
Even with efficient lookup algorithms, a single internet
packet (IP)-lookup incurs a significant number of memory
accesses. For example, in the worst case, the LC-trie
algorithm [23] requires seven memory accesses and the
Lulea algorithm [3] requires as many as 12 memory accesses.
With the requirement to process packets at wire speeds
(10 Gbps or higher), a router has to process more than
20 million packets every second. Under such requirements
supporting, IP-lookup stresses the memory system greatly.

Routers typically use a multithreaded multiprocessor
architecture to hide memory latencies. Caching is a technique

orthogonal to multithreading for reducing memory access
overhead in network applications. While multithreading
hides memory latency and improves processor utilization,
caching reduces the number of accesses that go to memory
and reduces average memory access time. It improves
performance by reducing the contention for memory,
preventing saturation of memory bandwidth, and reducing
the number of thread context switches. Earlier work suggests
that multithreading alone is not sufficient to ease the memory
bottleneck. Caching can further improve the throughput by a
large margin [2], [21].

The locality characteristics of IP-address traces have been
well studied [7], [15]. Such traces tend to have no spatial
locality but do tend to exhibit temporal locality. The
temporal locality characteristics vary based on the location
of the router in consideration. It is observed that at edge
routers, the IP-addresses tend to exhibit much greater
temporal locality than at core routers. For example, traces
observed at the edge routers tend to have less than 1 percent
of unique addresses in them, whereas the core router traces
typically contain 10 percent or greater unique addresses [22].
In order to evaluate the design considerations for routers,
we develop a parameterized synthetic trace generation
methodology [25], [26]. Traces generated by our attribute
preserving trace generator obey the prefix length distribution
of real traces [22] Further, by varying the parameters, we
generate traces which correspond to edge or core routers.

Various proposals have been made to use caches to
speedup the lookup algorithm [2], [5], [6], [36]. However, in
spite of using a cache, the number of external memory
accesses incurred can be as high as 75 percent of all requests
[2]. Thus, any reduction in misses should significantly
improve the average case performance of the router. We
propose a novel cache organization for routers that is fine
tuned to make use of the high-level properties of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009 1009

. K. Rajan is with Microsoft Research, Sadashiva Nagar, Bangalore, 560080,
India. E-mail: krajan@microsoft.com.

. R. Govindarajan is with SERC, Indian Institute of Science, Bangalore,
560012, India. E-mail: govind@serc.iisc.ernet.in.

Manuscript received 12 July 2007; revised 7 Aug. 2008; accepted 20 Nov.
2008; published online 9 Jan. 2009.
Recommended for acceptance by A. Gonzalez.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-07-0314.
Digital Object Identifier no. 10.1109/TC.2009.18.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 



algorithms used for forwarding. In doing so, we make use of
the observation that routing table entries change infre-
quently, and hence, the working set that will be active in the
near future is known in advance. The challenge is to fit this
working set elegantly in a cache. Also, care needs to be taken
to ensure that the proposed solution is generic enough to be
applicable to any distribution of prefixes in the routing
table. We propose simple modifications to the cache
organization to accomplish the above.

Earlier work shows that the use of a single unified cache to
store all-level nodes of a forwarding trie can improve the
throughput of routers [2]. Typically, in any trie used for
forwarding the root node has a large number of children
(216), while other nodes have relatively smaller number of
children. Every lookup involves at least an access to a Level-
One (LO) node (direct children of root) and may access lower
trie nodes. As a consequence, the locality characteristics of
LO nodes are significantly different from those of Lower
Level (LL) nodes (nodes other than LO nodes and root node).

We propose a Heterogeneous Segmented Cache Archi-
tecture (HSCA) [25] tailor-made to suit the packet forward-
ing application and exploit the locality characteristics
exhibited by the application. HSCA uses separate caches
for LO and LL nodes with sizes chosen based on the number
of accesses to each partition. As about 85 percent of the
accesses are to LO nodes, we skew the size of LO cache to be
eight times the size of LL cache. This difference in sizes
makes the cache heterogeneous in nature. Further, this
heavy skew toward the LO motivates the need to exploit the
LO cache organization in more detail. We optimize the
LO cache by introducing a weight-based replacement policy
that assigns weights to nodes based on their importance in
the trie. We also observe that the usage of a large branching
factor (216) for the root node [29] introduces a large number
of superfluous LO nodes. These are basically LO nodes which
get added when a fixed root branching factor is used but do
not contain any information, and hence, are never accessed
(Section 7 provides an example). For the routing tables we
use, a branching factor of 216 results in as many as 75 percent
superfluous LO nodes. As these superfluous nodes are
interspersed with useful nodes, using a conventional
placement function (indexing with lower order bits) for
the LO cache may not uniformly distribute the useful nodes
among the sets. Hence, a conventional placement function
may result in more conflict misses.

The mapping achieved by conventional placement
functions is depicted in Fig. 1a. In these mappings, the set
of useful LO nodes are partitioned based on the lower order
log m bits into m partitions. These m partitions are then

mapped one-to-one to m cache sets. Both the partitioning
and the mapping of partitions to sets is rigid. While this
rigidity in the partitioning and mapping helps to achieve
efficient direct indexing and hence low hit-latency, we
observe that it results in an uneven distribution of useful
LO nodes among partitions.

In contrast, we propose a two-level mapping framework
[26] which achieves the desired flexibility to reduce conflict
misses without significantly impacting access latency. The
framework (refer to Fig. 1b) maintains a rigid partitioning of
useful LO nodes into initial partitions (IP), but reorganizes
the nodes in the IPs into more evenly populated refined
partitions (RPs) through intelligent cache index selection.
The RPs are then rigidly (one-to-one) mapped to cache sets.
By introducing an additional layer of flexible mapping
between IP and RP, a better distribution of LO nodes to sets
can be achieved.

We further propose an elegant way to incorporate two-
level mapping into the existing cache organization without
significantly affecting the access time. We propose three
schemes to intelligently remap the nodes in IPs into RPs
namely FLEX, IMAP, and V-ASSOC. In each of these
schemes, the remapping used for one IP can be different
from that of another. As routing tables change infrequently,
these remap functions can be computed offline before a
routing table is put to use. This provides us with a flexibility
to adapt the node to set mapping to a given routing table.

The performance of HSCA is compared with two con-
temporary caching schemes, namely the single unified cache
[2] and the Intelligent Host Address Range Caching (IHARC)
[6]. Performance evaluation reveals that the base HSCA
scheme gives us up to 25 percent reduction in misses over the
unified scheme resulting in 32 percent memory access
speedup.Relative to IHARC, HSCAresults inup to90 percent
savings in number of misses for edge router traces leading to a
10-fold speedup in memory access time. For core router
traces, the weight-based replacement further enhances
performance leading to up to 25 percent lesser misses than
the unified cache. Further, when two-level mapping is
introduced, the number of misses of the LO cache reduce by
16 percent resulting in an overall memory access speedup of
up to 40 percent over the unified cache. In comparison, XOR-
based placement achieves at best a 3 percent reduction in LO
misses. Further, we perform a detailed timing analysis based
on HSPICE simulations to show that two-level mapping does
not impact the cache access time.

In Section 2, we provide a background on IP-forward-
ing. In Section 3, we discuss relevant related work. Section 4
describes our attribute preserving trace generation
methodology. In Section 5, we introduce HSCA and
elaborate on our weight-based replacement policy. Section 6
reports the experimental results and compares HSCA with
related work. Section 7 motivates the need for two-level
mapping. In Section 8, we present the cache organization
required for various remapping schemes. The performance
of two-level mapping-based schemes is reported in Sec-
tion 9 and we conclude in Section 10.

2 BACKGROUND

In order to facilitate Longest Prefix Matching, routers
typically represent the routing table information in the
form of a trie [4], [29]. In this paper, we only focus on
forwarding using tries as this is the most abundantly used
data structure for forwarding [29]. Consider the routing
table in Fig. 2a. This table can be represented by a simple

1010 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 1. Mapping from nodes to sets. (a) Conventional mapping. (b) Two-
level mapping.

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 



binary trie as shown in Fig. 2b. This trie is traversed using
the bits of the IP-address being looked up. The traversal
takes one bit at a time and goes to the left (right) child if the
bit is 0 (1). The search ends when a leaf node is reached.

A simple binary trie of Fig. 2b has a large number of nodes
and a high average depth. The various trie-based schemes use
a compact representation of the simple binary trie and differ
only in the manner in which they compress the trie. Below we
discuss a few commonly used compression schemes. A more
detailed discussion can be found elsewhere [4], [29].

Path compression. Nodes which have only one child are
removed from the trie. The number of such nodes that have
been skipped, the skip value, is stored in a node along the
path. While performing the lookup, the skip value informa-
tion is used to determine which is the next bit to use for
traversal. The path compressed form of Fig. 2b is shown in
Fig. 2c. This scheme was originally introduced in [20] and is
commonly used in many trie-based algorithms including
the radix trie in the BSD Linux kernel.

Level compression with prefix expansion. Instead of
using one bit at a time, k bits are used at one go to proceed to
one of the 2k (called the branching factor or bf) children. This
would save k � 1 visits in a binary trie. This requires
expanding existing nodes up to the required depth (prefix
expansion). As some of the nodes may not exist in the original
trie, superfluous nodes might have to be added. A quality
metric is usually used to restrict expansion to useful parts of
the trie. For example, a dynamic program is used to restrict
prefix expansion in [35]. In the LC-trie scheme, a branching
factor of 2k is used if it produces at most bf � ð1 � xÞ
superfluous leaves [23]. The level compressed form of
Fig. 2c with x … 1 is shown in Fig. 2d.

Root branching factor. As routing tables have very few
small prefixes most forwarding algorithms use a trie
structure with a large number of children for the root node
[17], [12], [23], [38]. Typically, a root branching factor of 216

is used. Also, as the number of children of the root is so
high, using pointers to each of the children is infeasible.
Instead, the level-one nodes are stored in an array structure.

An efficiently compressed trie structure used in earlier
cache studies [2] is the Level Compressed trie [23], [27]. In
an LC-trie, all the above three forms of compression are
used. We use this algorithm for all our evaluations as well.
The fill factor x is assumed to be 0.5 as it gives the best
compression [23].

In an LC trie-based algorithm, after reaching a leaf node,
the nexthop information can be obtained from auxiliary
tables. Alternatively, as suggested in [27], additional

information can be embedded in the trie itself and the
auxiliary tables can be completely eliminated. A more
detailed discussion on the organization required to do so
can be found in Section 6.3.

3 RELATED WORK

Due to the highly parallel nature of network applications,
the memory subsystem and not the computational re-
sources are the bottleneck [2], [21], [30]. Baer et al. [2]
demonstrate that a combination of caching and multi-
threading would be effective at bridging this performance
gap for packet forwarding algorithms. Mudigonda et al.
[21] compare a few contemporary schemes for reducing the
memory performance bottleneck. These include multi-
threading, wide-word memories, caching-based solutions,
and nonblocking data transfers. The study reveals that at
least a combination of multithreading and caching is
essential for a balanced NP architecture.

Below we discuss a few recent proposals that address the
memory performance gap for architectures tuned to net-
work applications and discuss caching-based solutions in
more detail. Sherwood et al. propose to use wide-word
accesses and internally pipelined memory architectures [31]
to enhance the memory throughput. They suggest ways to
tune existing network algorithms to utilize the wide-word
parallelism exposed by their architecture. Hasan et al. [13]
propose mechanisms to exploit the locality among DRAM
accesses. By reordering outstanding accesses to expose row
locality and performing locality sensitive buffer allocation,
they reduce the average DRAM access time. A virtually
pipelined network memory architecture is introduced in [1]
that, in the presence of large number of memory banks,
ensures predictable latencies for all memory accesses with
very high probability. While these schemes try to exploit the
parallelism provided by the multibanked organization of
memory, we propose to reduce the average memory access
time using caching mechanisms. We do not make any
assumptions about the parallelism exposed by the memory
architecture and explore ways of utilizing inherent locality
among accesses to the forwarding data structure. As
suggested in [2], [21], a combination of approaches is
required to bridge the memory gap.

Packet forwarding is a primary functionality for network
processors. A number of caching-based solutions have been
proposed to speedup packet forwarding algorithms [2], [5],
[6], [18], [28]. Before we discuss these schemes in detail, a
few common organizational features of these caches are
discussed. First, caches proposed for forwarding accom-
modate exactly one entry per cache line. This is because of
the total lack of spatial correlation between successively
accessed prefixes. Second, every time the entries of the
routing table in use change, the cache entries become stale
and need to be flushed/synchronized. However, to keep
the overhead of frequent route updates low, route updates
are initially made to a backup (shadow) routing table. This
backup table replaces the in-use table much less frequently
[4], [17]. As a consequence, the cache need not be flushed on
every route update, but can simply be flushed every time
the backup routing table is put to use. Attempts at caching
for IP-forwarding can be broadly classified into two
categories: caching address ranges or prefixes [5], [6] and
caching data structures used for IP-lookup [2]. Among
prefix caching proposals, an associative ternary cache [28] is
organized such that cache lines are ordered based on prefix
lengths. The appropriate bits of the incoming address are

RAJAN AND GOVINDARAJAN: A NOVEL CACHE ARCHITECTURE AND PLACEMENT FRAMEWORK FOR PACKET FORWARDING ENGINES 1011

Fig. 2. LC tries for forwarding. (a) Routing table. (b) Binary trie. (c) Path
compressed trie. (d) LC trie.

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 



compared with all cached prefixes and longest prefix match
is then chosen through a priority encoder. A route prefix
cache is a small fully associative cache [18] which stores a
mask along with the address to facilitate prefix matching.
To ensure longest prefix matching, all subprefixes are
marked as noncachable. Further, to reduce the number of
noncachable entries, a limited expansion of the tree is
performed. The prefix cache is extended with a new
replacement policy, mLRU [19]. The proposed policy
effectively combines LRU and LFU by ensuring that longer
flows are given more weightage over shorter flows.

The IHARC scheme [6] proposes caching of address
ranges and their routing decisions. By carefully choosing
the bits to index the cache, the number of address ranges
mapping to a cache set is minimized. Once the index bits
are removed, certain address ranges that are not originally
adjacent may become adjacent. If such adjacent ranges share
the same routing decision, they are merged together. In
IHARC, unlike a conventional cache, there could be entries
in the cache matching many addresses.

This slightly complicates the cache logic as the tag match
now involves applying a mask to the address tag before
doing a comparison. This work is extended by introducing
additional splitting bits which facilitate a variable cache set
mapping, where partitions to which more number of
address ranges map are given more sets [5]. A major
drawback of prefix caching schemes (as is evident in the
above discussed schemes) is that the requirement of the
longest prefix matching complicates the design of the cache.
We compare our proposed solution with the IHARC
scheme and show significant benefits.

Recent research focuses on caching the data structures
used for forwarding. The additional locality in accesses to
the nodes of a trie data structure used for forwarding is
exploited by using a cache to store the recently accessed
nodes of an LC-trie [2]. A single cache is used to store all-
level nodes (henceforth referred to as the unified cache
scheme) and uses LRU replacement. Our scheme is different
from the above in that it leverages performance by tuning
the cache organization to the locality characteristics of nodes
at various levels. In this paper, we compare the performance
of our proposal with one scheme from each category
(IHARC and unified). Performance evaluation reveals that
HSCA outperforms both these schemes.

In the context of general purpose computing, XOR-based
placement schemes [10] and prime modulo indexing
schemes [16] have been proposed to reduce conflict misses.
Our proposed two-level mapping scheme can make use of
application specific working set information. Performance
evaluation indicates that an XOR-based scheme is not very
effective in this domain. Lastly, in the context of embedded
processors, an intelligent index bit selection method is
proposed [9] to reduce conflict misses. Our performance
evaluation reveals that a bit selection-based approach is also
not very effective for packet forwarding.

4 SYNTHETIC TRACE GENERATION

One major difficulty in the performance evaluation of routers
and routing algorithms is the lack of publicly available traces
that correspond to publicly available routing tables. This
difficulty can be overcome by using synthetic traces.
However, in order for these evaluations to be useful, the
synthetic trace should match the characteristics of real
traces. Synthetic traces have the added advantage of being
controllable, and hence, can be used to make more

comprehensive evaluations. Two trace generation methods,
randIP and randNET, have been in use [2], [17], [38]. In
randIP, a random 32-bit IP-address is generated and
included in the trace if it matches an entry in the routing
table. In randNET, a random prefix is chosen from the
routing table and expanded to 32 bits. Traces generated by
these schemes do not match the characteristics of real traces
[22], [32]. More specifically:

1. Both randNET and randIP do not follow the prefix
length distribution of real traces [22]. It is observed
that the log of the average number of addresses that hit a
prefix of a given length decreases linearly with
increasing prefix length, for prefix lengths ranging
from 13 to 24. In particular, in this range, as the prefix
length increases by one, the log of the mean number of
hits per prefix decreases by 0.69. Although the plot for
randIP follows a similar behavior, its slope is much
higher. On the other hand, in randNET, the average
number of hits for a prefix of a given prefix length
remains constant as prefix length increases. The
authors of [22] also observe that, unlike randNET
and randIP, only a small percentage of the traffic
(about 5 percent) hits prefixes outside the prefix
length range of 13 to 24 bits.

2. Both the randNET and randIP schemes do not
preserve locality characteristics of real traces. With a
uniform random number generator used in rand-
NET and randIP, it is highly unlikely that an address
that is referred in the recent past will be encountered
again in the near future. Hence, both the schemes do
not conform to the tenets of temporal locality.

Our trace generation procedure plugs in observation 1 into
the LRU stack model [32], [34] to produce a methodology
which can emulate both the prefix length distribution and the
locality characteristics of real traces. The LRU stack algorithm
uses two primary parameters, A and �, which are used to
determine the cumulative distribution function (cdf) for the
hit index. The cdf is such that smaller hit indexes are preferred
over larger ones. A random variate index which follows the
cdf of thehit index is generated. If indexpoints to an entry in the
stack, that entry is moved to the top of the stack and the stack
is readjusted by moving down all entries upto (index � 1) by
one position. If the index is beyond thecurrent size of the stack,
all entries are moved down by one position and a new entry is
accommodated at the empty top position. The physical
significance of A and �, and the derivation of the cdf of the hit
index can be found in [34]. The important point to note is that
by increasing the value of �, the locality in trace can be
increased. Fig. 3 shows the footprint curve for one of our
synthetically generated traces with A … 10 and � … 1:8. It can
be seen that this curve depicts a trend similar to the footprint
curve of a real trace [32].

1012 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 3. Characteristics of pld1M trace (A … 10, � … 1:8). (a) Footprint
curve. (b) Prefix length distribution.

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 



One question that is not answered by [32] is How to choose
a new address to add to the stack? Observation 1 provides us
with a natural choice. The new entry should be chosen so
that the prefix length distribution of the synthetic trace
follows that of realistic traces. We make use of observation 1
to construct the probability mass function for prefix lengths
by assigning probabilities for hitting each prefix length.
While doing so we ensure that 95 percent of traffic hits
prefixes of prefix length 13-24. The remaining 5 percent
traffic is uniformly distributed among the prefixes outside
this range. All prefixes of a given prefix length are assumed
to be equally likely to be picked; hence, once a prefix length
is chosen, a prefix of the given prefix length n can be chosen
at random. This prefix is then expanded to 32 bits by
padding it with a uniformly distributed random number
between 0 and 232�n.

In Fig. 3b, we plot the log of average traffic per prefix against
the prefix length for one of our synthetically generated trace
(pld1M). The slope of the line for prefix lengths in the range
13-24 matches well with the real trace used in [22]. It is to be
noted that though the average traffic per prefix outside the range
13-24 is high, there are a very few prefixes outside this range,
and these prefixes contribute to only 5 percent of the traffic.

5 HSCA AND WEIGHT-BASED REPLACEMENT

In this section, we motivate the choice of a Heterogeneously
Segmented Cache Architecture and describe its operation.
We also propose a weight-based replacement policy to
enhance the performance of HSCA.

5.1 Why HSCA?
The unified cache scheme of [2] does not take into
consideration the locality characteristics of the nodes of trie.
Each lookup always incurs a LO node access, but may not
necessarily visit lower levels. We observe that in realistic
traces, only 17 percent of the lookups visit LL nodes. In
addition, less than 25 percent of LO nodes are useful
(nonsuperfluous) nodes. This implies that a large number
of accesses go to a small set of nodes. A plot of the number of
unique nodes visited in an LC-trie (footprint curve) for an
address trace of one billion packets (refer Fig. 4) reflects this
observation. These findings lead us to the choice of a
partitioned cache memory with two segments: one cache
explicitly for storing the LO nodes and the other cache for
storing LL nodes. As only 17 percent of accesses that are
incurred by LO cache are incurred by the LL cache, it is
natural to have a much smaller LL cache. Based on the above
data, we assume an LO size to LL size ratio of 8:1. Such a
segmented organization has various advantages. First, it
ensures that locality among accesses within each segment is
more or less homogeneous. Second, the segmentation
prevents the pollution of the LO nodes cache with low

locality LL nodes which would just waste LO node cache
space. Third, it allows each segmentation cache to be
optimized separately.

5.2 Working of HSCA
An LC-trie is laid out in an array (refer to Fig. 5) with nodes
closest to the root (LO nodes) preceding the remaining nodes
(LL nodes) in the array. Once the trie is laid out in this way,
the index of the array determines the memory address in the
memory space (the size of the nodes is a power of 2).
Assuming a root branching factor of 216 as suggested in [2],
[23], the LO nodes will have array index values in the range
0-65,535, while the LL nodes will have indexes greater than
65,535. We assume a 20 bit representation for the array index
that can accommodate an LC-trie of 220 nodes. This many
nodes is sufficient for contemporary routing tables [2], [23].
To form a k-bit index for either LO cache or LL cache, we use
the least significant k bits (bits 0 to k � 1) of the array index. As
only bits 0 to 15 can vary for LO nodes, it is sufficient to tag
bits k to 16 for the LO cache. However, for the LL cache, 20 � k
most significant bits form the tag. In all our experiments we
keep the number of lines in LL cache to be 1=8th of the
number of lines of the LO cache. Hence, if we use 12 bits to
index LO cache, we need to use only 9 bits to index the
LL cache. As the node accesses do not exhibit any spatial
locality [6], [2], we use the size of a single node as the cache
block size. Though we evaluate the HSCA for an LC-trie data
structure, it is to be noted that as most trie-based schemes use
a large root branching factor [29], [4], the same cache
organization can be used for other trie-based lookup
algorithms as well.

5.3 Weight-Based Replacement Policy
One advantage of using separate caches for LO and
LL nodes is that it allows each segment to be optimized
individually. As the LO nodes are accessed more frequently
and a large amount of cache space is dedicated to the
LO nodes cache, it is natural to focus optimization on this
cache segment. Below we propose a improved replacement
policy for the LO cache. Most replacement policies can be
thought of as replacing the cache line with the least weight. In
LRU, the weight is based on the recency of use, with most
recently used line being given the maximum weight. In
FIFO, the weight is the reciprocal of the lifetime in cache, and
in LFU, it is the number of accesses. At core routers, where
locality is expected to be less, these replacement schemes can
be improved by finding better weight assignment schemes.
We propose a weight-based replacement policy for the

RAJAN AND GOVINDARAJAN: A NOVEL CACHE ARCHITECTURE AND PLACEMENT FRAMEWORK FOR PACKET FORWARDING ENGINES 1013

Fig. 4. Footprint curves. (a) LO nodes. (b) LL nodes.

Fig. 5. LC-trie and its array representation.

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 



LO cache that statically assigns a weight to each of the
LO nodes. These weights are based on two observations:

1. A majority of the traffic from real traces hits prefixes
whose length ranges from 13 to 24. Within this range,
as prefix length increases, the average number of hits
for a prefix of a given prefix length decreases [22].

2. With a branching factor of 216 at root, prefixes of
length p < 16 would have 216�p LO nodes pointing
to the same forwarding table entry. Therefore, an
LO node representing a prefix of length p is only
covering 1=216�p prefixes.

Based on the above, we propose the following weight
assignment

. LO nodes corresponding to prefixes of length 8-12
are given weights from 0 to 4, respectively.

. LO nodes corresponding to prefixes of length 13-16
are given a weight of 7.

. The remaining LO nodes are sorted in ascending order
of the number of prefixes the subtrie rooted at that
node covers. The lower half of this sorted set is given a
weight 5 and the upper half is given a weight of 6.

As the weights are from 0 to 7, we need 3 bits to represent
them. This field can be added to the trie node structure. To
make a replacement decision, the weights of the nodes are
read and the lowest weight node is chosen for replacement.
In case of a tie, LRU replacement is used.

6 PERFORMANCE EVALUATION

To evaluate the performance of HSCA and the optimiza-
tions proposed in Section 5, we use a trace-driven simula-
tion methodology. To measure the misses incurred, we use
the dineroIV cache simulator with some modifications. The
modifications are made to accommodate our weight-based
replacement policy and simulate for caches of odd sizes
(number of sets is not a power of two). For the odd-sized
caches, indexing is done using the remainder obtained by
dividing the address (trie index) by the number of sets.

We use two routing tables for evaluation, the FUNET
routing table used in literature [23] and a recent routing
table from the Oregon core router made available through
the Route Views Project [41]. The FUNET table contains
41,578 entries and its LC-trie representation leads to
128,865 trie nodes. While the Oregon router contains
161,516 entries and 338,193 LC-trie nodes. The traces used
for simulation are generated using the attribute preser-
ving trace generation methodology described previously
(Section 4).

The traces used for performance comparison along with
the parameters used to generate them and the length of the
trace are listed in Table 1. Traces pld1M, pld10M, and
pld100M were generated using the methodology. Trace
pld1B was generated without using the LRU stack, but
conforming to prefix length distribution characteristic of

realistic traces. The suffix in the trace name gives us a
measure of the number of unique entires that would be in the
trace if it were to contain a total of 1 billion entries. The total
number of addresses in each trace is 1B (with the exception of
pld100M), which is two- to three-order magnitudes higher
than used in earlier studies [21], [22], [2]. Traces pld1M and
pld10M which have more locality represent traffic seen by
edge routers. While pld100M and pld1B, which have lower
locality, are representative of traffic seen by core routers [25].
Note that as the trace pld1B contains no induced locality, it
can be thought of as a worst-case traffic scenario. HSCA could
still help in this scenario as even though there is no locality in
the trace, there could still be locality in accesses to the trie
used for forwarding.

Throughout this section, we will refer to the size of HSCA
in terms of the number of lines in the LO cache. Note that
given the number of LO cache lines, we can determine the
number of LL cache lines. For example, an 8K HSCA refers to
an HSCA with 8K LO cache lines and 1K LL cache lines. We
evaluate the performance of 2K, 4K, and 8K HSCA with
associativities 1, 2, 4, and 8, respectively. Comparisons with
existing cache schemes are done both in terms of reduction in
miss rate and reduction in average memory access time. The
miss rates are compared by normalizing them against the
base unified/IHARC miss rate. This is done to highlight the
performance difference. The memory access speedup metric
takes into consideration the effects of both the absolute miss
rate and the percentage reduction in number of misses. The
speedup in memory access time is measured as [14]

speedup lower bound …
ht þ mrbase � mp

ht þ mrHSCA � mp
; ð1Þ

where mrbase is the miss rate of the base cache (unified/
IHARC) and mrHSCA is the miss rate of HSCA (both segments
included). We assume a hit time (ht) of 1 clock cycle and
a miss penalty (mp) of 100 clock cycles [2], [21]. As the
information in the auxiliary tables can be stored internally
within the LC-trie itself [27], the only memory accesses are
trie node accesses.

6.1 Performance Comparison with the Unified
Cache

We compare the performance of an HSCA of a given size
with a unified cache having the same number of total lines
(2K, 4K, and 8K HSCA would correspond to a 2.25K, 4.5K,
and 9K entry unified caches, respectively) and same
associativity. Figs. 6 and 7 compare the miss rate of HSCA
with unified, while Fig. 8 plots the speedup in average
memory access time. We only plot the performance for two
representative pairings of routing table and trace to save
space. For all cache sizes and associativities HSCA performs
better. A performance improvement of up to 25 percent in
miss rate and a 32 percent memory access speedup is
observed. The difference in performance can be attributed
to the segmented organization of HSCA. By ensuring that
only nodes with similar locality share a segment, HSCA
prevents pollution of cache space. The unified cache, on the
other hand, incurs additional misses as nodes with
heterogeneous characteristics compete for the same space.
Further, it can be seen that the performance improvement of
HSCA gets amplified further with increase in cache size.
This again implies that HSCA makes better use of the
available cache lines than the unified cache.

1014 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

TABLE 1
Traces Used for Performance Evaluation

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 



6.2 Impact of Locality on Performance Improvement
Fig. 9 shows the impact of locality in trace on the
performance of HSCA. The plot shows that there is an
increase in the relative performance of HSCA as locality
reduces (especially for higher cache sizes). In fact, the best
miss improvement is observed for an 8K HSCA with a
pld1B trace (lowest locality). For this configuration, there is
a 17.5 percent reduction in number of misses for the FUNET
table and 25 percent for the Oregon router. The correspond-
ing speedups in memory access time are 19.9 percent and
32.1 percent, respectively. This indicates that by segregating
the nodes with high locality from the low locality nodes,
HSCA is successful in extracting performance even in
worst-case traffic. This happens as by preventing pollution
of the LO cache, HSCA extracts locality among LO nodes
even when the traffic does not contain locality.

6.3 Performance Comparison with IHARC
The comparison between HSCA and the unified cache is
simple as both cache the nodes of an LC-trie. However, the
comparison of HSCA with IHARC is not as straightforward.
Below we describe the complications that arise and provide
a work around.

1. Counting misses: As HSCA caches nodes of a trie and
IHARC caches lookup results, the misses of the two
cannot be compared directly. A single miss from
IHARC can lead to many memory accesses as
multiple trie nodes may have to be accessed. To
overcome this, we measure IHARC misses in terms
of the number of LC-trie accesses incurred by the
IP-addresses that miss the IHARC result cache.

2. Node structure and size: To avoid maintaining
auxiliary tables the modified LC-trie adds two fields
port and string to the original LC trie (refer to
Fig. 10). The field Port stores the result of the lookup,
while string is needed to verify if the address indeed
matches the prefix of the node, as some of the
address bits could have been skipped.

We can further cut down on the size of the nodes
by utilizing the properties of an LC-trie. The string
field needs to be stored only if there has been a path
compression along the path. As from root the first
16 bits are all used to reach an LO node, there is no
need to store the string for LO nodes. Also, the
pointer field only points to the leftmost child at level
two, 19 bits are sufficient for the pointer field of the
LO nodes. For the same reason, even for the
LL nodes, it is sufficient to store only the lower
16 bits. This leads us to the node structure of Fig. 11.

RAJAN AND GOVINDARAJAN: A NOVEL CACHE ARCHITECTURE AND PLACEMENT FRAMEWORK FOR PACKET FORWARDING ENGINES 1015

Fig. 7. Miss rate comparison, FUNET, pld10M. (a) 2K HSCA. (b) 4K HSCA. (c) 8K HSCA.

Fig. 8. Speedup in memory access time over unified. (a) FUNET,
pld10M. (b) Oregon, pld1B.

Fig. 6. Miss rate comparison, Oregon, pld1B. (a) 2K HSCA. (b) 4K HSCA. (c) 8K HSCA.

Fig. 9. Impact of locality in trace. (a) Impact on miss rate, 8K eight-way
HSCA, FUNET. (b) Impact on average memory access time, Oregon.

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 



The length field (len) is used to identify how many of
the bits of the address should match the string field.
This field is added to save on the need to remember
how many bits of the address have been utilized.
Because of the different sizes of the nodes, we would
now need to use two arrays to store the trie: one for
LO nodes and one for the LL nodes.

3. Making a fair comparison between IHARC and HSCA: A
fair comparison can only be made if the two caches
are of identical sizes. The IHARC scheme requires a
large tag space as it stores a mask in addition to the
conventional tag. The tag and the mask field
together require 2 � ð32 � kÞ bits per line for a cache
with 2k sets. In comparison, HSCA only needs
(16 � k) bits for each LO cache line and (20 � j) bits
for each LL cache line (j … k � 3, as LL has 1=8th the
sets). On the other hand, each data element of
IHARC only needs to store a 5-bit output port field,
whereas each entry in HSCA is a node of compara-
tively larger width (refer Fig. 11). Based on the
above, we calculate the actual size (including both
tag and data space) needed for each cache config-
uration (refer to Table 2). We find that it is
reasonable to compare an IHARC scheme with
2k cache sets with an HSCA with 2k sets in
LO cache and 2k�3 sets in the LL cache, as even in
the worst case, the HSCA size is within 10 percent of
the IHARC size.

6.4 Performance Results
In Fig. 12, we compare the misses incurred by HSCA with
those of IHARC, and in Fig. 13a, we compare the speedup. To
save space, we present results only for the FUNET routing
table. HSCA performs 45 percent to 90 percent better for the
pld10M trace. Again, as the size increases, we find that the
relative performance of HSCA gets better and brings down
misses to 1=10th at 8K. It is to be noted that this reduction in
miss rate results in a few orders of magnitude speedup
(almost 8�) in memory access time. This large difference in
performance can be attributed to the ability of HSCA to
exploit the additional locality among accesses to individual
trie nodes. IHARC, on the other hand, can only exploit the
locality among destination IP-addresses of incoming packets.

6.5 Impact of Locality on Performance Improvement
In Figs. 13b and 13c, we plot the impact of locality in trace
on performance for 8K, eight-way associative cache. The
performance curves for other cache sizes and associativities
exhibit similar trend. The plot shows that HSCA outper-
forms IHARC for all traces. It is observed that for traces
with higher locality (pld1M and pld10M), HSCA reduces
the number of misses by a huge margin 60 percent to
80 percent. Unlike the unified cache, the relative perfor-
mance of IHARC improves relative to HSCA for lower
locality traces. However, even with the worst-case locality
trace (pld1B), there is a 100 percent speedup in average
memory access time for an 8K cache.

In summary, the performance improvements gained by
HSCA over both the unified cache and IHARC are robust.
Lastly, it is to be noted that even though we do not simulate
a full system with support for multithreading, some of the
effects of multithreading on cache performance will be
captured by our methodology. This is because multithread-
ing would only change the order in which packet
IP-addresses are processed due to interleaving of packets
from multiple threads. This, in turn, will only affect the
locality characteristics of the interleaved trace. As our cache
organization is robust enough to gain performance under
traffic with varying locality characteristics, we can expect
that HSCA will do well even in the presence of multi-
threading. However, it is to be noted that the effect of
multithreading on the interleaving of the accesses to the trie
nodes will not be captured by our methodology. For
example, with our methodology, the stack distance between
two accesses to the root node cannot be less than the
minimum path length from root to the closest leaf node,
while with multithreading, a lower stack distance is
observable. A more detailed analysis will be required to
understand the complete impact of multithreading on the
performance of a trie nodes cache. A full system simulation
will also be required to understand the extent to which

1016 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 8, AUGUST 2009

Fig. 10. Node structure for modified LC-trie.

Fig. 11. Node structure for HSCA. (a) LO node. (b) LL node.

TABLE 2
Total Sizes of HSCA and IHARC (in bytes)

Fig. 12. Comparison of HSCA with IHARC, pld10M, and FUNET. (a) 2K HSCA. (b) 4K HSCA. (c) 8K HSCA.

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on August 27, 2009 at 10:18 from IEEE Xplore.  Restrictions apply. 




















